Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
\(2A=2+\frac{3}{2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\)
\(3E-E=2E=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=>E=... tự tính
nobita kun ơi............em vừa phải thôi nhé. Đã không giúp con spam nữa. điều nay ai chả biết
Đặt : \(P=\frac{48^2\cdot8^5\cdot100^9}{12^2\cdot2^{15}\cdot4^2}\)
\(=\frac{\left(2^4\cdot3\right)^2\cdot\left(2^3\right)^5\cdot\left(2^2\cdot5^2\right)^9}{\left(2^2\cdot3\right)^2\cdot2^{15}\cdot\left(2^2\right)^2}\)
\(=\frac{2^8\cdot3^2\cdot2^{15}\cdot2^{18}\cdot5^{18}}{2^4\cdot3^2\cdot2^{15}\cdot2^4}\)
\(=\frac{2^{41}\cdot3^2\cdot5^{18}}{2^{23}\cdot3^2}=2^{18}\cdot5^{18}=\left(2\cdot5\right)^{18}=10^{18}\)
Vậy : \(P=10^{18}\)
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101
=(2^101 -1)/2^100 - 100/2^101
=> A = (2^101 -1)/2^99 - 100/2^100
Bạn ơi khó hiểu quá bạn giải chi tiết hơn giúp mình nhé mình sẽ k cho bạn 2 cái nhé