Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |2x-3| - |3x+2| = 0
Suy ra |2x-3|=|3x+2|
Ta có 2 trường hợp:
+)Trường hợp 1: Nếu 2x-3=3x+2
2x-3=3x+2
-3-2=3x-2x
-2=x
+)Trường hợp 2: Nếu 2x-3=-(3x+2)
2x-3=-(3x+2)
2x-3=-3x-2
2x+3x=3-2
5x=1
x=1/5
Vậy x thuộc {-1,1/5}
(2x - 3) - ( 3x + 2) = 0
tính trong ngoặc trước ngoài ngoặc sau
2x - 3 ko phải là 2 nhân âm 3.
2x = 2 nhân x
( 2x - 3) - ( 3x + 2) = 0 có nghĩa là 2x -3 = 3x + 2
còn đâu tự giải nhé
a) Ta có tam giác ABC cân tại A nên: \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(1)
Xét tam giác ADE có AD=AE (gt)
=> tam giác ADE cân tại A => \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AED}=\widehat{B}\)
Mà 2 góc ở vị trí đồng vị nên \(DE//BC\)(đccm)
b)Ta có AB=AE+EB và AC=AD+CD mà AB=AC, AE=AD => EB= CD
Xét tam giác BEC, tam giác BCD có:
EB= CD
\(\widehat{B}=\widehat{C}\)
BC chung
=> tam giác BEC= tam giác CDB ( c_g_c)
=>\(\widehat{BEC}=\widehat{BDC}=90^0\)
=> \(CE\perp AB\)(ĐCCM)
=)) Mik chịu á, bạn cứ làm mấy chỗ khác trước và chừa chứng minh cho mik cx đc ạ
\(\dfrac{x}{3}\) = \(\dfrac{y}{2}\); 4\(y\) = 5\(z\) và \(y\) + 2\(z\) = 72
y + 2z = 72 ⇒ y = 72 - 2z
Thay y = 72 - 2z vào biểu thức 4y = 5z ta có:
4(72 - 2z) = 5z
288 - 8z = 5z
8z + 5 z = 288
13z = 288
z = 288 : 13
z = \(\dfrac{288}{13}\)
y = 72 - 2 \(\times\) \(\dfrac{288}{13}\)
y = \(\dfrac{360}{13}\)
\(\dfrac{x}{3}\) = \(\dfrac{y}{2}\) ⇒ \(x\) = \(\dfrac{y}{2}\) \(\times\) \(3\) ⇒ \(x\) = \(\dfrac{360}{13}\) \(\times\) \(\dfrac{3}{2}\) = \(\dfrac{540}{13}\)
vậy ( \(x\); y; z) = ( \(\dfrac{540}{13}\); \(\dfrac{360}{13}\); \(\dfrac{288}{13}\))
Có: \(a^2+b+2=2ab\)
\(\Leftrightarrow a^2+2=b\left(2a-1\right)\)
\(\Leftrightarrow b=\frac{a^2+2}{2a-1}\in Z\)
khi và chỉ khi \(a^2+2⋮2a-1\)
\(\Leftrightarrow2\left(a^2+2\right)-a\left(2a-1\right)⋮2a-1\)
\(\Leftrightarrow a+4⋮2a-1\)
\(\Leftrightarrow2\left(a+4\right)-\left(2a-1\right)⋮2a-1\)
\(\Leftrightarrow9⋮2a-1\)
\(\Leftrightarrow2a-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Rồi giải a..........
Rồi giải b...........
Bước tiếp theo bn giải nha