Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có giá trị lớn nhất thì x+3 phải đạt giá trị nguyên nhỏ nhất và lớn hơn 0. Vì nếu x+3 <0 thì A<0 và sẽ không đạt max
Suy ra x+3=1 suy ra x=-2
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
\(A=\frac{3n-4}{n+1}\)
\(\text{Để A }\frac{3n-4}{n+1}\text{ là số nguyên }\)
\(\Rightarrow3n-4⋮n+1\)
\(\Rightarrow3n+3-7⋮n+1\)
\(\Rightarrow3\left(n+1\right)-7⋮n+1\)
\(\text{Vì }3\left(n+1\right)⋮n+1\text{ nên }7⋮n+1\)
\(\Rightarrow n+1\inƯ\left(7\right)\)
\(\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{0;-2;6;-8\right\}\)
\(A=\frac{2x-1}{x-3}=\frac{2\left(x-3\right)+5}{x-3}=2+\frac{5}{x-3}\)
Để Amax thì \(\frac{5}{x-3}\) đạt GTLN
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=1+3\)
\(\Leftrightarrow x=4\)
Vậy Amax\(\Leftrightarrow x=4\)
a) để A là phân số thì x+1 khác không hay x khác -1, x thuộc Z
b) để A không là phân số suy ra x=1
c) nếu x=-5 thì A=\(\frac{-9}{-4}\)
d)để A là số nguyên thì 2X+1 chia hết x+1 suy ra 1 chia hết x+1 suy ra x=0:-2
e)để A đạt GTLN thf x+1 phải nguyên dương và bé nhất =1 vậy để A đạt GTLN thì x=0
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(B=\frac{2020}{x}-2019\) (ĐKXĐ: \(x\ne0\))
B đạt GTLN <=> \(\frac{2020}{x}\)là số dương (\(\frac{2020}{x}>0\))
<=> \(x>0\)(vì \(2020>0\)), mà \(x\in Z\)=> \(x\ge1\)
<=> \(\frac{2020}{x}\le\frac{2020}{1}\)
<=> \(\frac{2020}{x}-2019\le2020-2019=1\)
Dấu "=" xảy ra <=> x = 1 (tmđkxđ)
Vậy GTLN của B là 1, tại x = 1.
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
\(A=\frac{11}{x+3}\)
\(\Rightarrow\)\(\text{Giá trị lớn nhất của }\)\(A=11\)
\(\Rightarrow x+3=1\)
\(\Rightarrow x=\left(-2\right)\)
Vậy ...