K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

A B C H x c a b D

Ta có: \(tan\frac{B}{2}=\frac{x}{c}\)

Lại có \(AB=BH=c\Rightarrow HC=a-c\)

Ta có: \(DC^2=DH^2+DC^2\Rightarrow\left(b-x\right)^2=x^2+\left(a-c\right)^2\)

\(\Rightarrow x^2-2bx+b^2=x^2+\left(a-c\right)^2\Rightarrow x=\frac{b^2-\left(a-c\right)^2}{2b}=\frac{a^2-c^2-a^2+2ac-c^2}{2b}\)

\(=\frac{2ac-2c^2}{2b}=\frac{c\left(a-c\right)}{b}\)

\(\left(\frac{x}{c}\right)^2=\frac{\left(a-c\right)^2}{b^2}=\frac{\left(a-c\right)^2}{a^2-c^2}=\frac{a-c}{a+c}\)

\(\Rightarrow tan\frac{B}{2}=\sqrt{\frac{a-c}{a+c}}\)

31 tháng 8 2016

ko biet

9 tháng 10 2016

bài đó mình cũng biết làm nhưng dài lắm nếu bn muốn biêt mình gợi ý cho

20 tháng 10 2016

Bài này dài dòng lắm bạn ạ viết cũng phải chết mỏi

Ủng hộ nha

28 tháng 9 2016

A B C D d c b

Ta có \(S_{ABC}=S_{ADB}+S_{ADC}\Leftrightarrow\frac{1}{2}bc=\frac{1}{2}cd.sin45^o+\frac{1}{2}bd.sin45^o\)

\(\Leftrightarrow\frac{1}{2}.sin45^o.d\left(b+c\right)=\frac{1}{2}bc\)

\(\Rightarrow\frac{b+c}{bc}=\frac{1}{sin45^o.d}\Leftrightarrow\frac{1}{b}+\frac{1}{c}=\frac{\sqrt{2}}{d}\)

28 tháng 9 2016

cẢM ƠN BẠN

8 tháng 10 2016

A B C x c a b b-x D

Gọi BD là tia phân giác góc B

Theo tính chất tia phân giác ta có \(\frac{x}{c}=\frac{b-x}{a}=\frac{x+b-x}{a+c}=\frac{b}{a+c}\)

\(\Rightarrow x=\frac{bc}{a+c}\). Áp dụng định lý Pytago : \(BD=\sqrt{AB^2+AD^2}=\sqrt{c^2+x^2}=\sqrt{c^2+\frac{b^2c^2}{\left(a+c\right)^2}}=\sqrt{\frac{a^2c^2+c^4+2ac^3+b^2c^2}{\left(a+c\right)^2}}\)

\(=\frac{\sqrt{c^2\left(a^2+2ac+c^2+b^2\right)}}{a+c}=\frac{c\sqrt{a^2+2ac+c^2+b^2}}{a+c}\)

\(\Rightarrow cos\left(\frac{B}{2}\right)=cosABD=\frac{AB}{BD}=\frac{c}{\frac{c\sqrt{a^2+2ac+c^2+b^2}}{a+c}}=\frac{a+c}{\sqrt{\left(a+c\right)^2+b^2}}\)

Bạn xem đề bài có ai chỗ nào không nhé :)

27 tháng 7 2017

Cho tam giác ABC vuông tại A,phân giác AD

a,CM 2AD =1AB +1AC 

b, Gọi I là giao điểm các đường phân giác của  tam giác ABC, biết IB=5,IC=10. Tính diện tích tam giác ABC

28 tháng 7 2017

a) Đặt AB = c; AC = b; AD = d. 
Áp dụng công thức tính diện tích tam giác bằng ½ tích hai cạnh nhân sin góc xen giữa ta có: 
S ABD = ½.AB.AD.sin BAD = ½.cd.sin 45º = ½cd.1/√2 
Tương tự: S ACD = ½bd.1/√2 
=> S ABC = S ABD + S ACD = ½cd.1/√2 + ½bd.1/√2 = ½d(b + c)/√2 
mà S ABC = ½bc 
=> ½d(b + c)/√2 = ½bc 
=> (b + c)/bc = √2/d 
<=> 1/b + 1/c = √2/d 

b,Kẻ CH ⊥ BI và CH cắt BA tại K. Tam giác BCK có BH vừa là phân giác vừa là đường cao Tam giác BCK cân tại B => BH là đường trung tuyến => CH = KH. và KC = 2HC. 

Đặt BC = x Ta có: AD = BK - AB = BC - AB = x - AB
Gọi giao điểm của AC và BH là E. 
Xét tam giác AEB và tam giác HEC có góc EAB = góc EHC = 90độ và góc AEB = góc HEC (đối đỉnh) 
tam giác AEB ~ tam giác HEC(g.g) 
Góc HCE = góc ABE. 
Góc HCE = góc ABC/2 (1) 
Mà Góc ECI = gócACB/2 (2) 
Từ (1) và (2) Góc ICH = Góc HCE + Góc ECI = (gócABC + góc ACB)/2 = 90độ/2 = 45độ. 
Xét tam giác HIC có góc IHC = 90độ và Góc ICH = 45 độ (góc còn lại chắc chắn = 45 độ) 
tam giác HIC vuông cân tại H => HI = HC. 
Áp dụng đinh lý Py-ta-go cho tam giác này ta được: 2HI² = IC² 
√2.IH = IC hay CH = IC/√2. 
CH =HI=√10 /√2

Suy ra BH=HI+IB=√10 /√2+√5

=>BC=√((√10 /√2+√5)²+(√10 /√2)²)

 KC = 2CH = 2.√10/√2

Xét tam giác: AKC có góc KAC = 90độ và Áp dụng định lý Py-ta-go ta có: KC² = AK² + AC² 
AC² = KC² - AK² hay AC² = (2.√10/√2)² - (x - AB)² (3) 

Tương tự đối với tam giác ABC ta có: AC² = BC² - AB² AC² = x² - AB² (4) 

Từ (3) và (4) suy ra (2.√10/√2)² - (x - AB)² = x² - AB² 

20 - (x² - 2ABx +AB²) = x² - AB²

=>10=x(x-AB)

sau đó tính AB rồi tính AC And S ABC

15 tháng 7 2020

cá voi xanh không ? :))))