Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
có \(a:b:c:d=2:3:4:5\)=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)=> \(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta co
\(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}\) =\(\frac{3a+b-2c+4d}{6+3-8+20}\)= \(\frac{105}{21}=5\)
=> 3a= 6.5 = 30, b= 3.5=15, 2c=8.5 =40, 4d= 20.5=100
=> a=10, b= 15, c= 20, d=25
3a+b-2c+4d=105=> 3a+b+4d=105+2c
\(a:b:c:d=2:3:4:5\Rightarrow\frac{a}{2}=\frac{b}{2}=\frac{c}{4}=\frac{d}{5}\)\(\Leftrightarrow\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}\)
\(Vì3a+b+4d=105+2c\Rightarrow3a+b-2c+4d=105\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}\)\(=\frac{105}{21}=5\)
Khi đó \(\frac{3a}{6}=5\Rightarrow a=10\)
\(\frac{b}{3}=5\Rightarrow b=15\)
\(\frac{2c}{8}=5\Rightarrow c=20\)
\(\frac{4d}{20}=5\Rightarrow d=25\)
Vậy a=10;b=15;c=20;d=25
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
Mặt khác :
Vì a ; b ; c là độ dài 3 cạnh của tam giác nên a ; b ; c > 0
Áp dụng BĐT Cauchy cho 2 số ta có : \(\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{cases}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu " = " xảy ra khi \(\begin{cases}a=b\\b=c\\c=a\end{cases}\)\(\Leftrightarrow a=b=c\)
=> đpcm
a) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> x = 2 . 3 = 6 ; y = 2 . 4 = 8
b) Ta có : \(\frac{a}{7}=\frac{b}{9}\)
\(=>\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10\)
=> a = 10 . 7 = 70 ; b = 10 . 9 = 90
c) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)
=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25
d) Ta có : \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)
\(=>\frac{2a}{8}=\frac{3b}{21}=\frac{4c}{40}=\frac{2a+3b+4c}{8+21+40}=\frac{69}{69}=1\)
=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đi
a:b:c=2:4:5 =>a/2 = b/4 = c/5.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 = b/4 = c/5 = a + b + c/2 + 4 + 5 = 22/11 = 2
a/2 = 2 => a = 4
b/4 = 2 => b = 8
c/5 = 2 => c = 10
a:b:c=2:4:5 =>a/2 = b/4 = c/5.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 = b/4 = c/5 = a + b + c/2 + 4 + 5 = 22/11 = 2
a/2 = 2 => a = 4
b/4 = 2 => b = 8
c/5 = 2 => c = 10
P/s tham khảo nha