K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019


\( 1)Q = \left( {\dfrac{1}{{y - \sqrt y }} + \dfrac{1}{{\sqrt y - 1}}} \right):\left( {\dfrac{{\sqrt y + 1}}{{y - 2\sqrt y + 1}}} \right)\\ Q = \left( {\dfrac{1}{{\sqrt y \left( {\sqrt y - 1} \right)}} + \dfrac{1}{{\sqrt y - 1}}} \right).\dfrac{{y - 2\sqrt y + 1}}{{\sqrt y + 1}}\\ Q = \dfrac{{1 + \sqrt y }}{{\sqrt y \left( {\sqrt y - 1} \right)}}.\dfrac{{{{\left( {\sqrt y - 1} \right)}^2}}}{{\sqrt y + 1}}\\ Q = \dfrac{{\sqrt y - 1}}{{\sqrt y }} \)

b) Thay \(y=3-2\sqrt{2}\) vào biểu thức ta được:

\(\dfrac{{\sqrt {3 - 2\sqrt 2 } - 1}}{{\sqrt {3 - 2\sqrt 2 } }} = \dfrac{{\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - 1}}{{\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} }} = \dfrac{{ \sqrt 2 - 1-1}}{{\sqrt 2 -1}} \\= \dfrac{{\sqrt 2-2 }}{{ \sqrt 2 -1}} = \dfrac{{(\sqrt 2 -2)\left( { \sqrt 2+1 } \right)}}{{\left( { \sqrt 2-1 } \right)\left( {\sqrt 2+1 } \right)}} = - \sqrt 2 \)

\(2)B = \dfrac{{\sqrt y - 1}}{{{y^2} - y}}:\left( {\dfrac{1}{{\sqrt y }} - \dfrac{1}{{\sqrt y + 1}}} \right)\\ B = \dfrac{{\sqrt y - 1}}{{y\left( {y - 1} \right)}}:\dfrac{{\sqrt y + 1 - \sqrt y }}{{\sqrt y \left( {\sqrt y + 1} \right)}}\\ B = \dfrac{{\sqrt y - 1}}{{y\left( {\sqrt y - 1} \right)\left( {\sqrt y + 1} \right)}}:\dfrac{1}{{\sqrt y \left( {\sqrt y + 1} \right)}}\\ B = \dfrac{1}{{y\left( {\sqrt y + 1} \right)}}.\sqrt y \left( {\sqrt y + 1} \right)\\ B = \dfrac{{\sqrt y }}{y} \)

b) Thay \(y=3+2\sqrt{2}\) vào biểu thức ta được:

\(B = \dfrac{{\sqrt {3 + 2\sqrt 2 } }}{{3 + 2\sqrt 2 }} = \dfrac{{\sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} }}{{3 + 2\sqrt 2 }} = \dfrac{{\left( {1 + \sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}} = 3 - 2\sqrt 2 + 3\sqrt 2 - 4 = - 1 + \sqrt 2 \)

Nhiều quá @@

21 tháng 7 2019

em cảm ơn nhiều ạ!

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

10 tháng 8 2019

bài 1: a) \(A=\frac{\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)}{\frac{a+2}{a-2}}\)

\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{a+2}{a-2}\)

\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\frac{a-2}{a+2}\)

\(A=2\cdot\frac{a-2}{a+2}\left(a\ne0;a\ne\pm2\right)\)

b) để A = 1 => \(2\cdot\frac{a-2}{a+2}=1\)

=> 2a - 4 = a + 2

=> a = 6 (thỏa mãn)

10 tháng 8 2019

bài 2) a) ĐKXĐ: \(x\ne4\)

b) \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(\Leftrightarrow B=\frac{2\sqrt{x}+\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow B=\frac{2\sqrt{x}+4}{x-4}=\frac{2}{\sqrt{x}-2}\)

c) \(B=\frac{2}{\sqrt{3+2\sqrt{3}}-2}\) \(\approx3,69\)

(bạn tự bấm máy tính nhé nhưng theo mình thấy nếu x = 4 + 2\(\sqrt{3}\) hay \(3+2\sqrt{2}\) thì sẽ cho kết quả đẹp hơn, k biết bạn có nhầm đề k nữa!)

~~~~~~~~~~Bài 1~~~~~~~~~~Cho \(I=\left(\frac{\sqrt{a}+a}{\sqrt{a}+1}+1\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right):\frac{1-\sqrt{a}}{1+\sqrt{a}}\)       a) Rút gọn biểu thức I.       b) Tính giá trị của biểu thức I khi \(a=27+10\sqrt{2}\)**********Bài 2**********Cho \(J=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)       a) Rút gọn J.       b) Tính giá trị của biểu thức J...
Đọc tiếp

~~~~~~~~~~Bài 1~~~~~~~~~~

Cho \(I=\left(\frac{\sqrt{a}+a}{\sqrt{a}+1}+1\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right):\frac{1-\sqrt{a}}{1+\sqrt{a}}\)

       a) Rút gọn biểu thức I.

       b) Tính giá trị của biểu thức I khi \(a=27+10\sqrt{2}\)

**********Bài 2**********

Cho \(J=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

       a) Rút gọn J.

       b) Tính giá trị của biểu thức J khi \(x=4+2\sqrt{3}\)

       c) Tìm giá trị của x để J > 1.

*~*~*~*~*~*Bài 3*~*~*~*~*~*

Cho \(L=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

       a) Rút gọn biểu thức L.

       b) Tính giá trị của L khi \(x=6+2\sqrt{5}\)

       c) Tìm x để \(L=\frac{6}{5}\)

(Giúp mình với nhé m.n, bài nào / câu nào cũng đk hết ạ, em rất cảm ơn luôn!)

 

 

1
3 tháng 8 2016

bài phân số thì tự mà làm có thấy khó đâu mà phải hỏi

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v