Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\tan90^0=\frac{\sin90^0}{\cos90^0}\)
Giá trị của \(\cos90^0\)là 0. Do đó \(\tan90^0=\frac{\sin90^0}{0}\)
Mà có khi nào mẫu số của một phân số là 0 không? Tất nhiên là không. Vì vậy \(\tan90^0\)là một số không xác định, do đó ta không thể tính được \(\tan90^0\)
Bn đăng linh tinh quá . Sẽ bị khóa nick đấy . Mà trang " Giúp tôi giải toán " này là trang để đăng các bài toán hay , khó chứ ko phải đểbđăng mấy thứ linh tinh này đâu !
Phương trình hoành độ giao điểm là:
12x2−3mx+2=012x2−3mx+2=0
Δ=(−3m)2−4⋅12⋅2=9m2−4Δ=(−3m)2−4⋅12⋅2=9m2−4
Để phương trình có hai nghiệm phân biệt thì Δ>0
⇔⎡⎢ ⎢⎣m>23m<−23
Gửi anh :)
Ta sẽ chứng minh tồn tại các số tự nhiên m,p sao cho :
96 000 .. 000 + a + 15p < 97 000 .... 000
m chữ số 0 m chữ số 0
Tức là : \(96\frac{a}{10^m}+\frac{15p}{10^m}< 97\left(1\right)\).Gọi \(a+15\)là số có \(k\)chữ số : \(10^{k1}a+15< 10^k\)
\(\Rightarrow\frac{1}{10}\le\frac{a}{10^k}+\frac{15}{10^k}< 1\left(2\right).\)Đặt \(x_n=\frac{a}{10^k}+\frac{15p}{10^k}\). Theo \(\left(2\right)\)
Ta có : \(x_1< 1\)và \(\frac{15}{10^k}< 1\)
Cho \(n\)nhận lần lượt các giá trị \(2;3;4;...;\)các giá trị nguyên của \(x_n\)tăng dần ,mỗi lần tăng không quá 1 đơn vị , khi đó [ \(x_n\)sẽ trải qua các giá trị \(1,2,3,\)Đến một lúc ta có \(\left[x_p\right]=96\).Khi đó \(96x_p\)tức là \(96\frac{a}{10^k}+\frac{15p}{10^k}< 97\). Bất đẳng thức \(\left(1\right)\)đợt chứng minh
Câu 20: Giao điểm của đồ thị và trục tung là điểm có toạ độ (0;-3)
Thay ngược vào phương trình => b = -3. Vậy chọn D
Trong toán học, một hàm số hay hàm là một quan hệ hai ngôi giữa hai tập hợp liên kết mọi phần tử của tập hợp đầu tiên với đúng một phần tử của tập hợp thứ hai. Ví dụ điển hình là các hàm từ số nguyên sang số nguyên hoặc từ số thực sang số thực.
k cho "chị" nhé