K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

a: 3-2|4x-5|=2/6

=>2|4x-5|=3-1/3=8/3

=>|4x-5|=4/3

=>4x-5=4/3 hoặc 4x-5=-4/3

=>4x=19/3 hoặc 4x=11/3

=>x=19/12 hoặc x=11/12

c: (7-3x)(2x+1)=0

=>2x+1=0 hoặc -3x+7=0

=>x=-1/2 hoặc x=-7/3

d: 2x(5-3x)>0

=>x(3x-5)<0

=>0<x<5/3

26 tháng 9 2017
toán lớp 7 mà đã học bpt hướng dẫn * tích lớn hơn 0 nên 2 nhân tử cùng dấu ( cùng + or cùng -) * <) thì trái dấu 1+;1-
26 tháng 9 2017

nếu >0 thì hai nhân tử cùng dấu

<0 thì trái dấu

a: (x-2)(x+3/4)>0

=>x-2>0 hoặc x+3/4<0

=>x>2 hoặc x<-3/4

b: (2x-5)(1-3x)>0

=>(2x-5)(3x-1)<0

=>3x-1>0 và 2x-5<0

=>1/3<x<5/2

c: (3-2x)(x+1)<0

=>(2x-3)(x+1)>0

=>2x-3>0 hoặc x+1<0

=>x>3/2 hoặc x<-1

d: (5x+11)(7-x)<0

=>(5x+11)(x-7)>0

=>x>7 hoặc x<-11/5

25 tháng 2 2017

Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.

a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)

\(\Rightarrow3x+1>0\)\(2x-4< 0\)

hoặc \(3x+1< 0\)\(2x-4>0\)

+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)

\(2x-4< 0\Rightarrow x< 2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)

+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)

\(2x-4>0\Rightarrow x>2\left(4\right)\)

Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)

\(\Rightarrow\) vô lý.

Vậy \(\frac{-1}{3}< x< 2.\)

b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)

\(\Rightarrow-x-5>0\)\(2x+1>0\)

hoặc \(-x-5< 0\)\(2x+1< 0\)

+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)

\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)

Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)

+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)

\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)

Từ (7) và (8) suy ra \(x< -5\)

Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).

25 tháng 2 2017

d)\(\left|x+3\right|< 5\)

\(\Rightarrow-5< x+3< 5\)

\(\Rightarrow-8< x< 2\)

5 tháng 7 2017

a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)

* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)

b) Không hiểu đề :v

c) \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{5}{3}\)

e) \(\left(4-2x\right)\left(5x+3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

Loại TH1, nhận TH2

Vậy \(-\dfrac{3}{5}< x< 2\)

g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)

* Nếu x < \(\dfrac{-1}{3}\)

PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)

0x - 2 = 0

0x = 2 \(\Rightarrow\) PT vô nghiệm

* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1-1+3x=0\)

6x = 0

x = 0 (t/m)

* Nếu x > \(\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1+1-3x=0\)

0x + 2 = 0

0x = -2

PT vô nghiệm.

Vậy x = 0

5 tháng 7 2017

a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)

\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)

\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)

+) Xét \(x\ge\dfrac{5}{4}\) có:

\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )

+) Xét \(x< \dfrac{5}{4}\) có:

\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )

Vậy...

b, tương tự

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy...

d, \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )

Vậy \(0< x< \dfrac{3}{5}\)

e, tương tự

g, \(\left|3x+1\right|+\left|1-3x\right|=0\)

\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)

+) Xét \(x\ge\dfrac{1}{3}\) có:

\(3x+1+3x-1=0\)

\(\Rightarrow6x=0\)

\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:

\(3x+1+1-3x=0\)

\(\Rightarrow2=0\) ( vô lí )

+) Xét \(x< \dfrac{-1}{3}\) có:

\(-3x-1+1-3x=0\)

\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )

Vậy ko có giá trị x thỏa mãn đề bài