K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

\(C=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.13}+...+\frac{2}{51.55}\)

\(2.C=\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\)

\(2.C=\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\)

\(2.C=\frac{1}{11}-\frac{1}{55}\)

\(2.C=\frac{5}{55}-\frac{1}{55}=\frac{4}{55}\)

\(C=\frac{4}{55}:2=\frac{4}{55}.\frac{1}{2}=\frac{2}{55}\)

Vậy \(C=\frac{2}{55}\)

20 tháng 3 2018

đọc kĩ đi bạn ơi

có cả số 1 nữa

28 tháng 4 2022

TH1) 

\(B=\dfrac{2}{11x15}+\dfrac{2}{15x19}+\dfrac{2}{19x23}+......+\dfrac{2}{51x55}\)

\(B=\dfrac{2}{11}-\dfrac{2}{15}+\dfrac{2}{15}-\dfrac{2}{19}+\dfrac{2}{19}-\dfrac{2}{23}+.....+\dfrac{2}{51}-\dfrac{2}{55}\)

\(B=\dfrac{2}{11}-\dfrac{2}{55}\)

\(B=\dfrac{8}{55}\)

TH2)

\(B=\dfrac{2}{11x15}-\dfrac{2}{15x19}-\dfrac{2}{19x23}-......-\dfrac{2}{51x55}\)

\(B=\dfrac{2}{11}+\dfrac{2}{15}-\dfrac{2}{15}+\dfrac{2}{19}-\dfrac{2}{19}+\dfrac{2}{23}-....-\dfrac{2}{51}+\dfrac{2}{55}\)

\(B=\dfrac{2}{11}+\dfrac{2}{55}\)

\(B=\dfrac{12}{55}\)

ta có:

A=2/4(4/11.15+4/15.19+4/19.23+.....+4/51.55)

A=2/4(1/11-1/15+1/15-1/19+1/19-1/23+....+1/51-1/55)

A=2/4(1/11-1/55)

A=2/4*4/55=8/220=2/55

B=-55/3/*8/3=-165/24=-55/8

suy ra A*B=2/55*(-55/8)=-1/4

24 tháng 3 2021

10.82 ôkê

21 tháng 6 2021

trả lởi đi

18 tháng 5 2018

ta nhân 2 lần A lên rồi lấy 2a - A là ra

18 tháng 5 2018

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)

5 tháng 7 2016

suy ra:

2A= 2 +2^2+ 2^3 + 2^4 + 2^5+ 2^6+ 2^7

suy ra 

2A-A= 1+2^7

còn mấy câu còn lại tương tự thui bạn ak

21 tháng 3 2021

B=1+3+3^2+3^3+..+3^100

=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101

=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)

=> 2B = 3^101 - 1

=> B =( 3^101 - 1) / 2