K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

C = 1.2.3 + 2.3.3 + 3.3.4 + .... + 3.99.100 
Đặt M = 1.2.3 + 2.3.4 + 3.4.5 + .... + 99.100.101 
=> M - 3A = 1.2.3 - 1.2.3 + 2.3.(4-3) + 3.4 ( 5-3) + .... + 99.100 ( 101 -3) 
= 1.2.3 + 2.3.4 + .... + 98.99.100 
=> M -3A = M - 99.100.101 
=> A = 99.100.101/3 = 333300

D = 

Đặt A=1.3.5 + 3.5.7 + 5.7.9 + ................ + 95.97.99
 8A= 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + ................ + 95.97.99.8
8A=1.3.5(7+1)+3.5.7(9-1)+5.7.9.(11-3)+.......+95.97.99(101-93)
8A=3.5.7+15+3.5.7.9-3.5.7+5.7.9.11-3.5.7.9+.......+95.97.99.101-93.95.97.99
8A=15+95.97.99.101
 A= \(\frac{15+95.97.99.101}{8}\)
 A=11517600

30 tháng 1 2020

\(A = 1.2+2.3+3.4+4.5+...+99.100\)

\(3A= 1.2.3+2.3.3+3.4.3+4.5.3+\)\(...+\)

\(99.100.3\)

\(3A = 1.2.3+2.3.(4-1)+3.4. (5-2)+\)

\(4.5. (6-3)+...+99.100. (101-98)\)

\(3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+\)

\(4.5.6-3.4.5+...+99.100.101-98.99.100\)

\(3A = 99 .100 .101\)

\(A = 99 .100 . 101 ÷ 3 \)

\(A = 333300\)

A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 343400

# Học tốt☘️#

11 tháng 9 2021

\(A=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3A=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+90.100\left(101-98\right)\)

\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3A=99.100.101\)

\(\Rightarrow A=\left(99.100.101\right):3\)

\(\Rightarrow A=333300\)

11 tháng 9 2021

\(B=1.3+2.4+3.5+...+99.101\)

\(\Rightarrow B=1\left(2+1\right)+2\left(3+1\right)+3\left(4+1\right)+...+99\left(100+1\right)\)

\(\Rightarrow B=1.2+1+2.3+2+3.4+3+...+99.100+99\)

\(\Rightarrow B=\left(1.2+2.3+3.4+...+99.100\right)+\left(1+2+3+...+99\right)\)

\(\Rightarrow B=333300+4950\)

\(\Rightarrow B=338250\)

13 tháng 1 2018

Mình làm mẫu 1 bài nha !

Có : 12A = 1.5.12+5.9.12+....+101.105.12

= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)

= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105

= 1.5.12-1.5.9+101.105.109

= 1155960

=> A = 1155960 : 12 = 96330

Tk mk nha

13 tháng 1 2018

Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4

= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)

= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100

= 98.99.100.101

=> D = 98.99.100.101/4 = 24497550

28 tháng 9 2015

A = 1.2. + 2.3 + 3.4 + ... + 99.100

3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 2.3.1 + ... + 99.100.101 - 99.100.98

3A = 99.100.101

3A = 999900

A = 333300

28 tháng 9 2015

lấy nick khác hả không qua được mắt tui đâu đồ bất công

27 tháng 9 2018

A = 1.2 + 2.3 + ... + 99.100

3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100

3A = 99.100.101

3A = 999900

A = 333300

C = 1.2.3 + 2.3.4 + ... + 49.50.51

4C = 1.2.3.4 + 2.3.4.(4-1) + ... + 49.50.51.(52-48)

4c = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 49.50.51.52 - 48.49.50.51

4C = 49.50.51.52

4C = 6497400

C = 1624350

27 tháng 9 2018

Ta có :

a=1.2+2.3+3.4+...+99.100

3a=1.2.3+2.3.3+3.4.3+...+99.100.3

3a=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3a=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3a=99.100.101

a=\(\frac{99.100.101}{3}\)

a=333300

Tính c làm tương tự

8 tháng 9 2016

a) \(A=2.4+4.6+6.8+...+18.20\)

\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)

\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)

\(6A=18.20.22\)

\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)

8 tháng 9 2016

d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101

=> 3A = 99.100.101

=> A = 99.100.101 / 3

=> A = 333300 

DD
3 tháng 8 2021

\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)

Suy ra \(E=A-B=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

4 tháng 8 2021

\(\frac{14949}{20200}\)