Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x+xy-2y=7$
$x(2+y)-2y=7$
$x(2+y)-2(y+2)=3$
$(x-2)(y+2)=3$
Do $x,y$ là số nguyên nên $x-2, y+2$ cũng là số nguyên. Do đó ta có bảng sau:
x-2 | 1 | 3 | -1 | -3 |
y+2 | 3 | 1 | -3 | -1 |
x | 3 | 5 | 1 | -1 |
y | 1 | -1 | -5 | -3 |
Kết luận | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn |
\(2x+xy-2y=7\)
\(\Rightarrow x\left(2+y\right)-2y-4+4=7\)
\(\Rightarrow x\left(2+y\right)-2\left(y+2\right)=3\)
\(\Rightarrow\left(x-2\right)\left(y+2\right)=3\)
\(\Rightarrow\left(x-2\right);\left(y+2\right)\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;-5\right);\left(3;1\right);\left(-1;-3\right);\left(5;-1\right)\right\}\left(x;y\inℤ\right)\)
a) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE
nên \(\widehat{BEC}=\widehat{A}+\widehat{ABE}=90^0+\widehat{ABE}>90^0\)
hay \(\widehat{BEC}\) là góc tù
b) \(\widehat{BEA}=180^0-110^0=70^0\)
\(\Leftrightarrow\widehat{ABE}=20^0\)
\(\Leftrightarrow\widehat{ABC}=40^0\)
\(\Leftrightarrow\widehat{ACB}=50^0\)
`6x^2+9=0`
Vì \(x^2\ge0\text{ }\forall\text{ x}\)
`\rightarrow`\(6x^2+9\ge9>0\text{ }\forall\text{ x}\)
`\rightarrow` Đa thức vô nghiệm.
Hoặc nếu bạn chưa hiểu hay chưa quen với cách trên thì bạn có thể sử dụng cách này:
\(6x^2+9=0\)
\(\rightarrow\text{ }6x^2=0-9\)
\(\rightarrow\text{ }6x^2=-9\)
Mà \(x^2\ge0\text{ }\forall\text{ x}\)
\(\rightarrow\text{ Đa thức vô nghiệm.}\)
(Cách này mình chỉ giải ra cho bạn hiểu thôi á, còn nếu mà chứng minh thì mình nghĩ cách làm thứ nhất của mình mới dùng dc á cậu).
Dùng phương pháp phản chứng em nhé:
Giả sử đa thức P(\(x\)) = 6\(x^2\) + 9, có nghiệm thì sẽ tồn tại giá trị của \(x\) để:
6\(x^2\) + 9 = 0
Mặt khác ta có: \(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) ≥ 0 ∀ \(x\) ⇒ 6\(x^2\) + 9 > 9 ∀ \(x\)
vậy 6\(x^2\) + 9 = 0 (là sai) hay
Đa thức: 6\(x^2\) + 9 vô nghiệm (đpcm)
-trường hợp góc cạnh góc
nếu tam giác có hai góc và một cạnh xen giữa bằng tam giác có hai góc và một cạnh xen giữa kia thì hai tam giác đó bằng nhau
-trường hợp cạnh góc cạnh
nếu tam giác có hai cạnh và một góc xen giữa này bằng hai cạnh và một góc xen giữa của tam giác kia thì hai tam giác bằng nhau
Đặt : \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
`=>x=5k,y=3k`
Ta có : \(x^2-y^2=4=>\left(5k\right)^2-\left(3k\right)^2=4\\ =>25k^2-9k^2=4\\ =>16k^2=4\\ =>k^2=\dfrac{1}{4}\\ =>k=\pm\dfrac{1}{2}\)
\(=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Dùng phương trình nghiệm nguyên:
Ta có: 3xy+x-y-6=0
(3xy+x)-y=6
x(3y+1)-1/3(3y+1)=6-1/3
(x-1/3)(3y+1)=17/3
3(x-1/3)(3y+1)=17
(3x-1)(3y+1)=17
Vì x, y thuộc Z nên 17 chia hết cho 3x-1, 3y+1
Nên 3x-1, 3y+1 thuộc Ư(17)={1, -1, 17, -17} nên thay vào ta được tương ứng:( Lưu ý (3x-1)(3y+1)=17 )
x= 0; 2/3.
y= -6; 16/3
( Ta thấy chỉ có x=0; y=-6 thỏa mãn x, y thuộc Z )
-x-2/3=-6/7
-x =-6/7+2/3
-x =-18/21+14/21
-x =-4/21
=> x=4/21
=> -x= -(2/3 + 6/7)
=> -x= -32/21
=> x=32/21