K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

 

f) \(\left(\sqrt{6x+1}-\sqrt{6x-1}\right)^2=\left(\sqrt{6x+1}\right)^2-2\sqrt{\left(6x+1\right)\left(6x-1\right)}+\left(\sqrt{6x-1}\right)^2\)

\(=6x+1+6x-1-2\sqrt{36x^2-1}=12x-2\sqrt{36x^2-1}\)

tương tự các câu khác mình làm tắt chút nha:

c) \(\left(\sqrt{2x+3}+\sqrt{2x-3}\right)^2=2x+3+2x-3-2\sqrt{\left(2x+3\right)\left(2x-3\right)}=4x+2\sqrt{4x^2-9}\)

d) \(\left(\sqrt{2x+y}+\sqrt{2x-y}\right)^2=2x+y+2x-y-2\sqrt{\left(2x+y\right)\left(2x-y\right)}=4x-2\sqrt{4x^2-y^2}\)

\(\left(\sqrt{5x-2}-\sqrt{5x+2}\right)^2=5x-2+5x+2-2\sqrt{\left(5x-2\right)\left(5x+2\right)}=10x-2\sqrt{25x^2-4}\)

 

 

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

a)

ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)

\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.

b)

ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)

\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)

\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

e)

ĐKXĐ: \(x\geq \frac{5}{3}\)

PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)

\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)

\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)

\(\Leftrightarrow 4=(x+2)(2x-3)\)

\(\Leftrightarrow 2x^2+x-10=0\)

\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=2$

f) Bạn xem lại đề.

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

1 tháng 7 2015

\(\left(\sqrt{6x+1}-\sqrt{6x-1}\right)^2=\left(\sqrt{6x+1}\right)^2-2\sqrt{\left(6x+1\right)\left(6x-1\right)}+\left(\sqrt{6x-1}\right)^2\)

\(=6x+1+6x-1-2\sqrt{36x^2-1}=12x-2\sqrt{36x^2-1}\)

\(\left(\sqrt{5x-2}-\sqrt{5x+2}\right)^2=5x-2+5x+2-2\sqrt{\left(5x-2\right)\left(5x+2\right)}=10x-2\sqrt{25x^2-4}\)

1 tháng 7 2015

\(\left(\sqrt{2x+3}+\sqrt{2x-3}\right)^2=\sqrt{2x-3}^2+2\sqrt{\left(2x+3\right)\left(2x-3\right)}+\sqrt{2x-3}^2=2x-3+2x+3+2\sqrt{4x^2-9}=4x+2\sqrt{4x^2-9}\)

\(\left(\sqrt{2x+y}+\sqrt{2x-y}\right)^2=2x+y+2x-y+2\sqrt{\left(2x+y\right)\left(2x-y\right)}=4x+2\sqrt{4x^2-y^2}\)

29 tháng 6 2019

a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)

So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)

Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha