Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 1/1.6+1/6.11+1/11.16+....+1/96.101
= 1/5.5/1.6+ 1/5.5/6.11+1/5.5/11.16+...+1/5.5/96.101
=1/5 . ( 5/1.6+5/6.11+5/11.16+...+5/96.101)
=1/5 . ( 1/1-1/6 +1/6-1/11+1/11-1/16+....+1/96-1/101)
=1/5 . (1/1-1/101)
=1/5 . 100/101
= 20/101
5A=\( 1-{1\over 6}+{1\over 6}-{1\over 11}+...{1\over 96}-{1\over 101}\)
=\(1- {1 \over 101}={100 \over 101}\)
suy ra A =\({20 \over 101}\)
bạn ơi hình như đề sai ở chỗ cuối cùng kia kìa chỗ đó có phải : x . x ( 1 + 5 )
Đúng ko bạn ?????
a)
=\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5\left(7^3-7^4\right)}{7^3.3^2}\)
=\(\frac{3^4\left(3-1\right)}{^{ }3^4\left(9+3\right)}-\frac{5.7^3-5.7^4}{7^3.3^2}\)
=\(\frac{1}{6}-\frac{7^3.5\left(1-7\right)}{7^3.3^2}=\frac{1}{6}-\frac{30}{9}=-\frac{19}{6}\)
Vậy A=\(-\frac{19}{6}\)
câu b lúc nã mk làm sai rui
dây mới đúng
=\(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
=\(\frac{1}{5}\left(1-\frac{1}{101}\right)=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)
Ta có: \(A=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{26\cdot31}\)
\(=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{26\cdot31}\right)\)
\(=5\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\cdot\left(1-\frac{1}{31}\right)=5\cdot\frac{30}{31}=\frac{150}{31}>1\)
hay A>1(đpcm)
Ta có: \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\) \(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\) \(=1-\dfrac{1}{101}\) \(\dfrac{100}{101}\)
\(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+.....+\dfrac{5}{96.101}\)
\(=1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+......+\dfrac{1}{96}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{101}{101}-\dfrac{1}{101}\)
\(=\dfrac{101-1}{101}\)
\(=\dfrac{100}{101}\)
=1-(1/3.5+1/3.7+1//7.9+...+1/55.57)
=1-1/2.(2/3.5+2/5.7+2/7.9+...+2/55.57)
=1-1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/55-1/57)
=1-1/2(1/3-1/57)
=1-1/2.18/57
=1-9/57
=48/57
=
1-(1/3.5+1/5.7+1/7.9+....+1/53.55+1/55.57)
=1-1/2.[1/3-1/5+1/5-1/7+1/7-1/9+...+1/53-1/55+1/55-1/57]
=1-1/2.[1/3-1/57]
=1-1/2.54/171
=1-28/171
=143/171.
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Có: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(C=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(C=\frac{1}{5}\left(1-\frac{1}{101}\right)\)
\(C=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)
\(5C=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\)
\(5C=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)
\(5C=1-\frac{1}{101}\)
\(C=\frac{100}{\frac{101}{5}}\)