K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2015

Đặt ƯCLN\(\left(16n+5;24n+7\right)=d\)

=> 16n + 5 chia hết cho d và 24n + 7 chia hết cho d.

=> 3.(16n + 5) - 2.(24n + 7) chia hết cho d.

=> 48n + 15 - 38n + 14 chia hết cho d

=> 1 chia hết cho d

=> d = 1

  suy ra điều phải chứng tỏ
 

29 tháng 3 2017

Gọi d là UCLN(16n+5;24n+7)

=>16n+5 chia hết cho d và 24n+7 chia hết cho d

Vì:16n+5 chia hết cho d=>48n+15 chia hết cho d

     24n+7 chia hết cho d=>48n+14 chia hết cho d

Ta có:(48n+15)-(48n+14) chia hết cho d

         =          1 chia hết cho d

Vì d=1 nên \(\frac{18n+5}{24n+7}\)là phân số tối giản với mọi n.

Mình làm bài này rồi,đề thi HSG lớp 6 có bài này.

26 tháng 1 2017

9 tháng 3 2017

e gio biet lam chua ha cu

ki ten 

thuc

dinh trong thuc

12 tháng 4 2023

Vvvv

 

goi d la UCLN (7n+10;5n+9) ( d thuoc N sao)

=>7n+10 chia hết cho d;5n+9 chia hết cho d

=>35n+50 chia het cho d;35n+63

=>-13 chia hết d

Ma 7n+10 ko chia het cho d => 7n+10/5n+9 la ps toi gian

3 tháng 4 2017

Gọi d là UCLN( 7.n +10, 5.n+9)

=> 7n +10 chia hết d 

     5n +9 chia hết d

ta có ; 5(7n +10) - 7(5n +9) = 50 - 63 = -13 CHIA HẾT CHO d

Mặt khác : 7n+10 là số lẻ , 5n +9 là số chẵn => phân số đó tối giản

Mình chỉ làm tắt  thôi nhé có gì lên lớp hỏi cô giáo

6 tháng 5 2021

Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))

=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

14 tháng 4 2017

Giả sử cả 12n+1 và 30n+2 đều chia hết cho d

=> 12n+1 chia hết cho d và 30n+2 chia hết cho d

=> 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=> 60n+5 chia hết cho d và 60n+4 chia hết cho d

=> 60n+5-60n-4 chia hết cho d

<=> 1 chia hết cho d

=> d=1

Vậy \(\frac{12n+1}{30n+2}\)là tối giản với mọi n thuộc N

26 tháng 2 2018

gọi d là ƯC(n+1; 3n+2)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}}\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)

\(\Rightarrow3n+3-3n-2⋮d\)

\(\Rightarrow\left(3n-3n\right)+\left(3-2\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản

26 tháng 2 2018

Gọi d = ƯCLN ( n + 1 ; 3n + 2 )

Ta có : n +  1 chia hết cho d            => 3( n + 1 ) chia hết cho d

           3n + 2 chia hết cho d

=> ( 3n + 3 - 3n - 2 ) chia hết cho d => 1 chia hết cho d

=> d thuộc { 1 ; - 1 }

=> n + 1 ; 3n + 2 là hai số nguyên tố cùng nhau

=> phân số \(\frac{n+1}{3n+2}\) là phân số tối giản