Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
Ta có:
\(\left(\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\right)^2=a+\sqrt{b}+a-\sqrt{b}+2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}\)
\(=2\left(a+\sqrt{a^2-b}\right)\)
\(\Rightarrow\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=\sqrt{2\left(a+\sqrt{a^2-b}\right)}\)
Tương tự, ta cũng được \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=\sqrt{2\left(a-\sqrt{a^2-b}\right)}\)
áp dụng BĐT Cô - si ta được:
\(a+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}=\sqrt{a}\)(1)
\(b+\frac{1}{4}\ge2\sqrt{b.\frac{1}{4}}=\sqrt{b}\)(2)
Công hai vế (1) và (2) ta được:
\(a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(điều phải chứng minh)
Dấu"=" xảy ra khi a=b
\(\sqrt{1\left(x-1\right)}\le\frac{1+x-1}{2}=\frac{x}{2}\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{\frac{x}{2}}{x}=\frac{1}{2}\)
\(\sqrt{2\left(y-2\right)}\le\frac{y-2+2}{2}=\frac{y}{2}\Rightarrow\sqrt{y-2}\le\frac{y}{2\sqrt{2}}\Rightarrow\frac{\sqrt{y-2}}{y}\le\frac{1}{2\sqrt{2}}\)
Vậy GTLN của B là \(\frac{1}{2}+\frac{1}{2\sqrt{2}}\)
tại x = 2 và y = 4
\(VP=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
\(VP^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{2.2}}\)
\(=a+\sqrt{\left[a^2-\left(a^2-b\right)\right]}=a+\sqrt{b}\)
\(\Rightarrow VP=\sqrt{a+\sqrt{b}}=VT\)
Bài 1:
Ta có công thức a=a' và b khác b' thì 2 đường thẳng đó song song
Nên 2m=m-1
<=>2m - m =1
<=>m=1
Vậy khi m=1 thì 2 đường thẳng sẽ song song
Bài 2:
Để 2 đường thẳng cắt nhau tại 1 điểm thì a khác a' và b khác b'
Nên:
mx khác x
=>X khác m thì 2 đường thẳng cắt nhau
Tới đây thì bạn vẽ dồ thị là sẽ ra thôi hoặc sử dụng phương trình hoành độ giao điểm nhé
Xin lỗi vì tớ chỉ giúp được tới đây thôi <_>
a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy Min P =-1/4
c, Chắc bằng nhau vì cùng dương mà
Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0
b) Đkxd X >=0
Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)
Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0
Hay min p =0
Dấu = xảy ra <=> x=0
Vậy để minP=0<=>x=0
C)Dkxd x>1
CóP>=0(chứng minh trên )
=>|P|=P
cách 1:
áp dung bất đẳng thức Cô-si ta có:
\(\frac{a}{2}+\frac{b}{2}\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=\sqrt{a.b}\)(1)
\(\frac{b}{2}+\frac{c}{2}\ge2\sqrt{\frac{b}{2}.\frac{c}{2}}=\sqrt{b.c}\)(2)
\(\frac{c}{2}+\frac{a}{2}\ge2\sqrt{\frac{c}{2}.\frac{a}{2}}=\sqrt{c.a}\)(3)
cộng 2 vế (1);(2) và (3) ta được:
\(\frac{a}{2}+\frac{b}{2}+\frac{b}{2}+\frac{c}{2}+\frac{c}{2}+\frac{a}{2}\ge\sqrt{a.b}+\sqrt{b.c}+\sqrt{c.a}\)
\(\Leftrightarrow a+b+c\ge\sqrt{a.b}+\sqrt{b.c}+\sqrt{c.a}\)(điều phải chứng minh)
Câu 2:
a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)
=>\(2m\ne4\)
=>\(m\ne2\)
b: Thay m=0 vào (d1), ta được:
\(y=\left(0-1\right)x+2=-x+2\)
Thay m=0 vào (d2), ta được:
\(y=\left(3-0\right)x-2=3x-2\)
Vẽ đồ thị:
c: Phương trình hoành độ giao điểm là:
3x-2=-x+2
=>3x+x=2+2
=>4x=4
=>x=1
Thay x=1 vào y=3x-2, ta được:
y=3*1-2=3-2=1
d:
Khi m=0 thì (d2): y=3x-2
Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox
y=3x-2 nên a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq72^0\)
Câu 3:
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
b: Ta có: AC//OM
OM\(\perp\)AB
Do đó: AB\(\perp\)AC
=>ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
mà ΔABC nội tiếp (O)
nên O là trung điểm của BC
=>B,O,C thẳng hàng
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)CM tại E
Xét ΔMBC vuông tại B có BE là đường cao
nên \(ME\cdot MC=MB^2\)(3)
Xét ΔMBO vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)