Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kết quả rút gọn xấu (+dài) nữa. (có thể đề sai)
b)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left[\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)
c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=\frac{\left(\sqrt{5}-\sqrt{2}\right)^2}{3}\)
a) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right].\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{1}{2}-2=-\frac{3}{2}\)
Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)
\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)
\(=-\frac{3}{2}\)
Lời giải:
a)
\(\sqrt{8+2\sqrt{15}}+\frac{2}{\sqrt{5}+\sqrt{3}}=\sqrt{3+5+2\sqrt{3}.\sqrt{5}}+\frac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\sqrt{3}+\sqrt{5}+\frac{2(\sqrt{5}-\sqrt{3})}{5-3}\)
\(=\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}=2\sqrt{5}\)
b)
\(\sqrt{7+2\sqrt{6}}+\frac{6-2\sqrt{6}}{\sqrt{6}}-\sqrt{54}=\sqrt{6+1+2\sqrt{6}.\sqrt{1}}+\sqrt{6}-2-3\sqrt{6}\)
\(=\sqrt{(\sqrt{6}+1)^2}+\sqrt{6}-2-3\sqrt{6}\)
\(=\sqrt{6}+1+\sqrt{6}-2-3\sqrt{6}=-(\sqrt{6}+1)\)
\(a.\sqrt{8+2\sqrt{15}}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{5}+\sqrt{3}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+2}{\sqrt{5}+\sqrt{3}}\\ =\frac{8+2\sqrt{15}+2}{\sqrt{5}+\sqrt{3}}\\ =\frac{10+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=2\sqrt{5}\)