Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)
\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)
Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)
<=> \(\left|x-1\right|+\left|x-3\right|\)
Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:
\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
đẳng thức xảy ra khi \(1\le x\le3\)
Vậy ................
1.
a)
\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)
Đẳng thức xảy ra \(\Leftrightarrow x=2\)
b)
\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)
c) ĐK: \(x\ne-1\)
\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)
\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)
\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
a) \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(\dfrac{x^2-x-2}{x^2}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(4+x^2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
ĐKXĐ: \(x\ne0;x\ne2\)
\(\Leftrightarrow A=\left(\dfrac{-x\left(2-x\right)^2-4x^2}{2\left(x^2+4\right)\left(2-x\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(\Leftrightarrow A=\dfrac{-x^3-2x^2-4x}{2\left(x^2+4\right)\left(2-x\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(\Leftrightarrow A=-\dfrac{\left(x^2+2x+4\right)\left(x+1\right)\left(x+2\right)}{2\left(x^2+4\right)\left(2-x\right)}\)
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
a)Đkxđ x≠\(\frac{5}{4}\)
Ta có để \(\frac{2x+3}{4x-5}\)=0=>2x+3=0=>x=\(\frac{3}{2}\)(thỏa mãn)
b)Ta có \(x^2-4x+3=x^2-3x-x+3\)
=x(x-3)-(x-3)
=(x-1)(x-3)
=>Đkxđ x≠1,3
để bài b)=0 duy ra (x-1)(x-2)=0
=>x=1,x=2 đối chiếu đkxđ có x=2 (t/mãn)
c)phân thức tương đương:\(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
= \(\frac{x+1}{x-1}\)
=>Đkxđ x≠1
Để x+1/x-1=0=>x+1=0
=>x=-1(t/mãn)
d) phân thức tương đương
\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+5\right)}\)
=\(\frac{x+2}{x+5}\)=>x≠-5
để phân thức đạt 0 suy ra x+2=0
=>x=-2
e)phân thức tương đương
\(\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}\)
=\(\frac{x+4}{x+1}\)
Đkxđ x khác -1
Để phân thức đạt GT là 0 x+4=0=>x=-4
g)\(\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+3\right)}\)
=\(\frac{\left(x+1\right)^2}{x^2+x+3}\)
vì\(x^2+x+3>0\)(Dễ dàng chứng minh)
=>xϵR
Để phân thức đạt gt là 0 => \(\left(x+1\right)^2=0=>x=-1\)
a:
Sửa đè: \(B=\left(2x+1+\dfrac{1}{2x-1}\right):\left(\dfrac{2x^2-6x}{x-3}-\dfrac{4x^2}{2x-1}\right)\)
\(B=\dfrac{4x^2-1+1}{2x-1}:\left(2x-\dfrac{4x^2}{2x-1}\right)\)
\(=\dfrac{4x^2}{2x-1}:\dfrac{4x^2-2x-4x^2}{2x-1}\)
\(=\dfrac{4x^2}{-2x}=-2x\)
b: |x-2|=1
=>x-2=1 hoặc x-2=-1
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì A=-2*1=-2
a/ \(M=\dfrac{x^2-x+1}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3x^2-6x+3}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3\left(x-1\right)^2}{x^2+2x+1}\ge\dfrac{1}{4}\)
b/ \(N=\dfrac{3x^2+4x}{x^2+1}=4-\dfrac{x^2-4x+4}{x^2+1}=4-\dfrac{\left(x-2\right)^2}{x^2+1}\le4\)
d/tìm Min:
D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-\(\dfrac{x^2+1}{x^2+1}\)=\(\dfrac{\left(x+2\right)^2}{x^2+1}\)-1>=-1
=>Min D=-1.Dấu = xảy ra khi x=-2
TÌM Max:
D=\(\dfrac{4x+3}{x^2+1}\)=\(\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)=4-\(\dfrac{\left(2x-1\right)^2}{x^2+1}\)=<4
=>Max D=4.Dấu = xảy ra khi x=\(\dfrac{1}{2}\)
các câu kia tương tự nha bạn.chúc bạn học tốt
Rảnh rỗi sinh nông nỗi , tui lm câu a nha!
a) A = \(\dfrac{2x-1}{x^2+2}\) = \(\dfrac{\left(x^2+2x+1\right)-\left(x^2+2\right)}{x^2+2}\)
= \(\dfrac{\left(x+1\right)^2}{x^2+2}-\dfrac{x^2+2}{x^2+2}\) = \(\dfrac{\left(x+1\right)^2}{x^2+2}\) \(-1\)
Vì \(x^2+2>0\) với mọi x => \(\dfrac{\left(x+1\right)^2}{x^2+2}\) >= 0 với mọi x
=> Dấu = xảy ra <=> x + 1 = 0 => x = -1
=> GTNN của A = -1 khi x = -1
\(a.B=\left[\left(2x+1\right)+\dfrac{1}{2x-1}\right]:\left(\dfrac{2x^2-6x}{x-3}-\dfrac{4x^2}{2x-1}\right)\) ( x # \(\dfrac{1}{2}\) ; x # 3 ; x # 0 )
\(B=\dfrac{4x^2}{2x-1}.\dfrac{\left(x-3\right)\left(2x-1\right)}{2x\left(x-3\right)\left(2x-1\right)-4x^2\left(x-3\right)}=4x^2.\dfrac{x-3}{-2x\left(x-3\right)}=-2x\) b. \(x^2-3x=0\) ⇔ \(x\left(x-3\right)=0\text{⇔}x=0\left(KTM\right)\) hoặc \(x=3\left(KTM\right)\)
Vậy ,...
a) Ta có:
\(M=4x^2-2x+1\)
\(=\left(2x\right)^2-2x.2.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(2x\right)^2-2x.2.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(=\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta lại có: \(\left(2x-\dfrac{1}{2}\right)^2\ge0\)
\(\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow M\ge\dfrac{3}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow\left(2x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow2x-\dfrac{1}{2}=0\)
\(\Leftrightarrow2x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy \(Min_M=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{4}\)
\(M=4x^2-2x+1=\left(4x^2-2x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN của M là \(\dfrac{3}{4}\) khi x = \(\dfrac{1}{4}\)
\(N=-x^2+x-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}\)
Vậy GTLN của N là \(-\dfrac{7}{4}\) khi x = \(\dfrac{1}{2}\)