\(\frac{xy+1}{9}=\frac{xz+2}{15}=\frac{yz+3}{27}v\text{à}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có 

\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)

\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)

\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)

\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)

Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

Với \(x=2\Rightarrow y=1;z=3\)

Với \(x=-2\Rightarrow y=-1;z=-3\)

Vậy ....

26 tháng 7 2018

giỏi quá 

19 tháng 2 2017

Áp dụng tính chất dãy tỷ số bằng nhau ta có :

\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\)= \(\frac{xy+1+yz+2+xz+3}{9+15+27}\) = \(\frac{xy+yz+xz+6}{51}\) (1)

Thay xy +yz + xz = 11 vào (1) ta được :

\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\) = \(\frac{11+6}{51}\) = \(\frac{1}{3}\)
Do đó :
xy = \(\frac{1}{3}\). 9 - 1 = 2 => x = \(\frac{2}{y}\) (2)
yz = 3
xz = 6 => x = \(\frac{6}{z}\) (3)
Từ (2),(3) => x = \(\frac{2}{y}\) = \(\frac{6}{z}\)
=> x2 = \(\frac{2}{y}\) . \(\frac{6}{z}\)
= \(\frac{12}{yz}\) = \(\frac{12}{3}\) = 4
=> x = \(\pm\) 2
*) Với x = 2
=> y = 2:2 = 1
và z = 6 :2 = 3
*) Với x = -2
=> y = 2 : (-2) = -1
và z = 6 : (-2) = -3
Vậy ( x;y;z ) bằng các cặp số sau :
( 2;1;3) hoặc (-2;-1;-3)
20 tháng 2 2017

cảm ơn bạn nha

19 tháng 11 2018

\(\frac{xy}{2}=\frac{yz}{4,5}=\frac{xz}{8}=\frac{xy+yz+xz}{2+4,5+8}=\frac{29}{14,5}=2\)

\(\Rightarrow xy=4,yz=9,xz=16\)

\(\Rightarrow\left(xy\right).\left(yz\right).\left(xz\right)=4.9.16\)

\(\Rightarrow\left(xyz\right)^2=2^2.3^2.4^2\Rightarrow\left(xyz\right)^2=24^2\Rightarrow\orbr{\begin{cases}xyz=24\\xyz=-24\end{cases}}\)

Nếu xyz = 24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(yz\right)=24:9=\frac{8}{3}\\y=\left(xyz\right):\left(xz\right)=24:16=\frac{3}{2}\\z=\left(xyz\right):\left(xy\right)=24:4=6\end{cases}}\)

Nếu xyz = -24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(xz\right)=-24:9=-\frac{8}{3}\\y=-24:16=-\frac{3}{2}\\z=-24:4=-6\end{cases}}\)

7 tháng 2 2021

giúp mình với nhé!

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.

29 tháng 9 2016

b. Ta có : xy.yz.zx=3/5.4/5.3/4

      =) x^2.y^2.z^2=9/25

     (=)    (x.y.z)^2  =9/25

    mà     (x.y.z)^2  =(3/5)^2

     (=)      x.y.z       =3/5

*Ta có xy=3/5

=)  xyz =3/5

=)3/5.z =3/5

=)    z   =3/5:3/5

(=)  z    =1

*Ta có: yz=4/5

=)  xyz =3/5

=) x.4/5=3/5

=)    x   =3/5:4/5

=)    x   =  3/4

*Ta có: zx=3/4

 =) xyz =3/5

(=) xzy =3/5

 =)3/4.y=3/5

 =)   y   =3/5:3/4

 =)   y   =4/5

Vậy x=3/4, y=4/5, z=1