Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)
Trường hợp 1: 2x-3y+5z=-1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)
Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5
Trường hợp 2: 2x-3y+5z=1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)
Do đó: x=15/70=3/14; y=1/7; z=1/5
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
Đang rảnh nên lm linh tinh thử và kết quả là
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Leftrightarrow\hept{\begin{cases}x-1=2k\\y-2=3k\\z-3=4k\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}}\)
Thay x = 3k + 1 ; y = 3k + 2 và z = 3k + 3 vào 2x + 3y - z = 50 ta có
2. ( 3k + 1 ) + 3 . ( 3k + 2 ) - ( 4k + 3 ) = 50
<=> 6k + 2 + 9k + 6 - 4k - 3 = 50
<=> ( 6k + 9k - 4k ) + ( 2 + 6 - 3 ) = 50
<=> 11k + 5 = 50
<=> 11k = 45
<=> \(k=\frac{45}{11}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{45}{11}.2+1\\y=\frac{45}{11}.3+2\\z=\frac{45}{11}.4+3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{90}{11}+1=\frac{101}{11}\\y=\frac{135}{11}+2=\frac{157}{11}\\z=\frac{180}{11}+3=\frac{213}{11}\end{cases}}\)
Vậy ....
K thì thôi nhá
@@ Học tốt
Bài 26:
e) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}.\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}.\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}.\)
=> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\) và \(2x-3y+z=6.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{12}=3=>y=3.12=36\\\frac{z}{20}=3=>z=3.20=60\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(27;36;60\right).\)
i) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x.y.z=810.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
\(x.y.z=810\)
=> \(2k.3k.5k=810\)
=> \(30k^3=810\)
=> \(k^3=810:30\)
=> \(k^3=27\)
=> \(k=3.\)
Với \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.5=15\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)
Mình chỉ làm 2 câu thôi nhé.
Chúc bạn học tốt!
e) Ta có:
\(\frac{x}{3}=\frac{y}{4}\) ⇒ \(\frac{x}{9}=\frac{y}{12}\) (1)
\(\frac{y}{3}=\frac{z}{5}\) ⇒ \(\frac{y}{12}=\frac{z}{20}\) (2)
Từ (1) và (2) ⇒ \(\frac{x}{9}=\frac{y}{12}=\frac{x}{20}\) ⇒ \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
\(=\frac{2x-3y+z}{18-36+20}\)
\(=\frac{6}{2}=3\)
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}.\)
=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\) và \(x+y-z=38.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y-z}{\frac{3}{2}+\frac{4}{3}-\frac{5}{4}}=\frac{38}{\frac{19}{12}}=24.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{\frac{3}{2}}=24\Rightarrow x=24.\frac{3}{2}=36\\\frac{y}{\frac{4}{3}}=24\Rightarrow y=24.\frac{4}{3}=32\\\frac{z}{\frac{5}{4}}=24\Rightarrow z=24.\frac{5}{4}=30\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(36;32;30\right).\)
Chúc bạn học tốt!
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y-4z}{3+4-5}\frac{38}{2}=19\)
\(\frac{2x}{3}=19=>x=19x3:2=26\)
\(\frac{3y}{4}=19=>y=19x4:3=25.3\)
\(\frac{4z}{5}=19=>z=19x5:4=23.75\)