Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Cho từng cái < hoặc > 0 rồi giải ra tìm điều kiện của x
Bài 2:
Phân tích số 12 ra là:
3 x 4 = 12
-3 x (-4) = 12
Ta thấy:
3 + 4 = 7
-3 + (-4) = -7 (đáp ứng đúng yêu cầu đề)
=> a = -3 và b = -4
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)
Bài 1 :
A ) 3 < x < 5
=> x thuộc { 4 }
Vậy x = 4
Câu b và câu c cứ theo vậy mà làm .
Bài 2 :
| x + 7 | = 0
x = 0 - 7
x = -7
Vậy x = -7
bài 1: đề chắc không?
2) a) \(\left(x-3\right)\left(x+5\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x>-5\end{cases}\Leftrightarrow}x>3}\)
hoặc \(\hept{\begin{cases}x-3< 0\\x+5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -5\end{cases}\Leftrightarrow}x< -5}\)
Vậy x > 3 hoặc x < -5
b) \(\left(x-3\right)\left(x+5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x+5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x< -5\end{cases}\Leftrightarrow}3< x< -5}\)
hoặc \(\hept{\begin{cases}x-3< 0\\x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-5\end{cases}\Leftrightarrow}-5< x< 3}\)
Vì 3 < x < -5 là vô lý => loại
Nên x phải thỏa mãn -5 < x < 3
a/ \(\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy .......
b/ \(\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1>x>-2\\x\in\varnothing\end{matrix}\right.\)
Vậy ...
c/ \(\left(x-1\right)\left(x+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-2< x< 1\end{matrix}\right.\)
Vậy ..
Tìm x∈ Z, biết:
a) ( x - 1)(x + 2)= 0
\(\Rightarrow\) x - 1 = 0 hoặc x + 2 = 0
\(\Rightarrow\) x = 1 hoặc x = -2
b) ( x - 1)(x + 2)< 0
\(\Rightarrow\) x - 1 < 0 và x + 2 > 0 hoặc x - 1 > 0 và x + 2 < 0
\(\Rightarrow\) x < 1 và x > -2 hoặc x > 1 và x < -2 (vô lí)
\(\Rightarrow\) \(x\in\left\{-1;0\right\}\)
c)( x - 1)(x + 2)> 0
\(\Rightarrow\) x - 1 > 0 và x + 2 > 0 hoặc x - 1 < 0 và x + 2 < 0
\(\Rightarrow\) x > 1 và x > -2 hoặc x < 1 và x < -2
\(\Rightarrow\) x > 1 hoặc x < -2