Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(3.\left(\dfrac{5}{3}x-7\right)-2\left(1,5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Rightarrow5x-21-3x-12-\left(5x+20-x^2-4x\right)-x^2=80\)
\(\Rightarrow5x-21-3x-12-5x-20+x^2+4x-x^2=80\)
\(\Rightarrow5x-3x-5x+4x+x^2-x^2=80+21+12+20\)
\(\Rightarrow x=133\)
Câu b tương tự! Cứ tách ra!
a) \(3\left(\dfrac{5}{3}x-7\right)-2\left(1,5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\) (1)
\(\Leftrightarrow\left(5x-21\right)-\left(3x+12\right)-\left(5x+20-x^2-4x\right)=80+x^2\)
\(\Leftrightarrow5x-21-3x-12-5x-20+x^2+4x=80+x^2\)
\(\Leftrightarrow x-53+x^2=80+x^2\)
\(\Leftrightarrow x+x^2-x^2=80+53\)
\(\Leftrightarrow x=133\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{133\right\}\)
b) chưa rõ đề.
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
`Answer:`
\(3\left(\frac{5}{3}x-7\right)-2\left(1.5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow3\left(\frac{5x}{3}-7\right)-2\left(5x+6\right)-\left(5-x\right)\left(x+4\right)=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+x^2+4x=80+x^2\)
\(\Leftrightarrow5x-21-10x-12-5x-20+4x=80\)
\(\Leftrightarrow-6x-53=80\)
\(\Leftrightarrow-6x=133\)
\(\Leftrightarrow x=-\frac{133}{6}\)
\(\frac{4}{5}x^2\left(\frac{x}{3}-\frac{1}{2}\right)-\left(\frac{1}{5}x-\frac{2}{3}\right)\left(4\frac{x^2}{3}+1\right)=\frac{22}{45}x^2\)
\(\Leftrightarrow36x^2\left(\frac{x}{3}-\frac{1}{2}\right)-45\left(\frac{x}{5}-\frac{2}{3}\right)\left(\frac{4x^2}{3}+1\right)=22x^2\)
\(\Leftrightarrow12x^3-18x^2-12x^3-9x+40x^2+30=22x^2\)
\(\Leftrightarrow22x^2-9x+30=22x^2\)
\(\Leftrightarrow-9x+30=0\)
\(\Leftrightarrow-9x=-30\)
\(\Leftrightarrow x=\frac{10}{3}\)
Tìm x biết :
a) 3(5/3x-7)-2(1.5x+6)-(5-x)(x+4)=80+x^2
b) 4/5x^2(x/3-1/2)-(1/5x-2/3)(4x^2/3+1)=22/45x^2
Bài 2:
a) Thay x=-2 vào phương trình 2x+k=x-1, ta được
2*(-2)+k=-2-1
⇔-4+k=-3
⇔k=-3-(-4)=-3+4=1
Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2
b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được
(2*2+1)*(9*2+2k)-5*(2+2)=40
⇔5*(18+2k)-20=40
⇔5*(18+2k)=40+20
⇔18+2k=12
⇔2k=12-18=-6
⇔k=-3
Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2
c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được
2*(2*1+1)+18=3*(1+2)*(2*1+k)
⇔2*3+18=3*3*(2+k)
⇔24=9*(2+k)
⇔\(2+k=\frac{24}{9}=\frac{8}{3}\)
\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)
Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1
\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)
\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)
\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)
\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)
\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)
\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)
Vậy nghiệm của pt là \(S=\left\{-3\right\}\)
\(h,2x\left(x-1\right)=x^2-1\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy nghiệm của pt là \(S=\left\{1\right\}\)
- 2(x+5)(x-5)-(x+2)(2x-3)+x(x^2-8)=(x+1)(x^2-x+1)
<=> 2(x^2-25) - 2x^2+3x-4x+6 + x^3-8x = x^3+1
=>2x^2-50 - 2x^2 -9x+6+x^3-x^3-1 = 0
<=>-9x - 45 =0
<=>-9x=45
<=>x=-5
Còn phần b và c bạn cứ khai triển ra,mình phải đi học nên không có thời gian giải cho bạn
a) \(5x\left(\frac{1}{5}x-2\right)+3\left(6-\frac{1}{3}x^2\right)=12\)
=> \(x^2-10x+18-x^2=12\)
=> -10x + 18 = 12
=> -10x = -6
=> -5x = -3
=> x = 3/5
b) 7x(x - 2) - 5(x - 1) = 7x2 + 3
=> 7x2 - 14x - 5x + 5 = 7x2 + 3
=> 7x2 - 14x - 5x + 5 - 7x2 - 3 = 0
=> -19x + 2 = 0
=> -19x = -2
=> x = \(\frac{2}{19}\)
c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
=> 10x - 16 - 12x + 15 = 12x - 16 + 11
=> 10x - 16 - 12x + 15 - 12x + 16 - 11 = 0
=> (10x - 12x - 12x) + (-16 + 15 + 16 - 11) = 0
=> -14x + 4 = 0
=> -14x = -4
=> -7x = -2
=> x = 2/7
a: =>5x-21-3x-12+(x-5)(x+4)=80+x2
\(\Leftrightarrow x^2-x-20+2x-33=x^2+80\)
=>x-53=80
hay x=133
b: \(\Leftrightarrow\left(\dfrac{1}{5}x-\dfrac{2}{3}\right)\cdot\left(\dfrac{4}{3}x^2+1\right)\cdot\dfrac{1}{6}=\dfrac{22}{45}:\dfrac{4}{5}=\dfrac{11}{18}\)
\(\Leftrightarrow\left(\dfrac{1}{5}x-\dfrac{2}{3}\right)\left(\dfrac{4}{3}x^2+1\right)=\dfrac{11}{3}\)
\(\Leftrightarrow\dfrac{4}{15}x^3+\dfrac{1}{5}x-\dfrac{8}{9}x^2-\dfrac{2}{3}-\dfrac{11}{3}=0\)
\(\Leftrightarrow\dfrac{4}{15}x^3-\dfrac{8}{9}x^2+\dfrac{1}{5}x-\dfrac{13}{3}=0\)
\(\Leftrightarrow12x^3-40x^2+9x-195=0\)
hay \(x\in\left\{\dfrac{10+\sqrt{685}}{6};\dfrac{10-\sqrt{685}}{6}\right\}\)