K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

Nhận thấy \(x=2013;2014\) là 2 nghiệm

- Với \(x>2014\Rightarrow\left\{{}\begin{matrix}x-2013>1\\x-2014>0\end{matrix}\right.\) \(\Rightarrow\left(x-2013\right)^{2010}+\left(x-2014\right)^{2012}>1\) pt vô nghiệm

- Với \(x< 2013\Rightarrow\left\{{}\begin{matrix}\left|x-2013\right|>0\\\left|x-2014\right|>1\end{matrix}\right.\)

\(\Rightarrow\left(x-2013\right)^{2010}+\left(x-2014\right)^{2012}>1\) pt vô nghiệm

- Với \(2013< x< 2014\Rightarrow\left\{{}\begin{matrix}0< x-2013< 1\\0< 2014-x< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2013\right)^{2010}< x-2013\\\left(x-2014\right)^{2012}=\left(2014-x\right)^{2012}< 2014-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2013\right)^{2010}+\left(x-2014\right)^{2012}< x-2013+2014-x=1\)

Pt vô nghiệm

Vậy pt có đúng 2 nghiệm \(x=\left\{2013;2014\right\}\)

29 tháng 2 2020

ta có ( x - 2013 )2010 > hoặc = 0

tương tự (x - 2014 )2012 > hoặc = 0

vì 2 biểu thức này + với nhau = 1

=> nếu ( x - 2013 )2010 = 1 => x = 2014 ( 2012 thì nếu trừ 2014 sẽ = -2)

còn nếu ( x - 2014 )2012 = 1 => x = 2013 ( 2015 thì nếu trừ 2013 sẽ = 2)

=> x = 2013;2014

29 tháng 2 2020

Này Vũ Hữu Trường minh, bn có thể giải giúp mk theo cách 5 trường hợp: x=2013, x=2014, x<2013, x>2014 và 2013<x<2014 đc ko. Bn ko cần làm 4 trường hợp đầu, chỉ cần giải giúp mk TH cuối thui: 2013<x<2014. Phiền bn một tí nha, mk sắp phải nộp rùi. Cám ơn bn trxVũ Hữu Trường minh

a) Ta có:

\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)

\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)

Mà ta có:

\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)

\(\Rightarrow x+11=0\Rightarrow x=-11\)

Ta có:

\(A=1+x+x^2+x^3+...+x^{100}\)

Đặt \(B=x+x^2+x^3+...+x^{100}\)

\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)

\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)

\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)

\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)

\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)

29 tháng 11 2018

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\Rightarrow x+1\in\left\{-1;1\right\}\Rightarrow x\in\left\{-2;0\right\}\)

\(+,x=0;\Rightarrow\frac{x}{x+1}=0\left(tm\right);+,x=-2\Rightarrow\frac{x}{x+1}=\frac{-2}{-1}=2\left(tm\right)\)

Vậy: x E {0;2}

b,  \(\frac{a}{2010}=\frac{b}{2012}=\frac{c}{2014}\Rightarrow a=2010k;b=2012k;c=2014k\left(k\in Z\right)\)

\(\frac{\left(a-c\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\)và: \(\left(a-b\right)\left(b-c\right)=\left(-2k\right)\left(-2k\right)=4k^2\)

\(\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)\(\left(ĐPCM\right)\)

c, Ta có:

\(25-y^2=8.x^2\Rightarrow25-y^2⋮8\Rightarrow y^2:8\left(dư1\right)\left(y\le5\right)\Rightarrow y\in\left\{1;3;5\right\}\)

Ta lần lượt thử ta thấy:

\(25-y^2=8.x^2\left(tm\right)\Leftrightarrow y=5\Rightarrow x=0\)

Vậy: y=5;x=0

29 tháng 11 2018

Ko thanks mk à