K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để P/S \(\frac{n+5}{n+2}\) là số nguyên thì

n+5 \(⋮\)n+2

\(\Leftrightarrow\)n+2+3  \(⋮\)n+2

Mà n+2 \(⋮\)n+2 nên 3 \(⋮\)n+2

=>n+2EƯ(3)={-1;-3;1;3}

    nE{-3;-5;-1;1}

7 tháng 5 2016

\(\frac{n+5}{n+2}\)\(\frac{n+2}{n+2}\)\(\frac{3}{n+2}\) =1+\(\frac{3}{n+2}\) để phân số đã cho nguyên khi n+2 là ước của 3

n+2=(-1; 1;3;-3)

n=(-3; -1;1;-5)

9 tháng 5 2018

để phân số trên có giá trị là số nguyên thì:

n + 5 chia hết cho n + 2

<=> ( n + 2 ) + 3 chia hết cho n+2

ta thấy: n + 2 chia hết cho n + 2

=> 3 phải chia hết cho n + 2

=> n + 2 thuộc Ư(3)

n + 2 thuộc { 1; 3; -1 ; -3)

n thuộc { -1; 1; -3; -5}

9 tháng 5 2018

Có: \(\frac{n+5}{n+2}=1+\frac{3}{n+2}\)

Để \(\frac{n+5}{n+2}\)có giá trị nguyên thì \(\frac{3}{n+2}\)có giá trị nguyên.

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-2;-1;1;2;3\right\}\)

\(\Rightarrow n\in\left\{-5;-4;-3;-1;0;1\right\}\)

Vậy với \(n\in\left\{-5;-4;-3;-1;0;1\right\}\)thì \(\frac{n+5}{n+2}\)có giá trị nguyên.

17 tháng 2 2019

Giải:

a) Để B là phân số <=> n - 12 \(\ne\)0 =>  n \(\ne\)12

b) Để B có giá trị là số nguyên <=> 5 \(⋮\)n - 12

                                                <=> n - 12 \(\in\)Ư(5) = {1; -1; 5; -5}

Lập bảng: 

n - 12 1 -1 5 -5
  n 13 11 17 7

Vậy ...

17 tháng 2 2019

giải:a)để \(\frac{5}{n-12}\)là số nguyên nên suy ra:5 chia hết cho n-12                                                                                                                suy ra:n-12 thuộc vào Ư(5). MÀ Ư  5 =1,-1,5,-5                                                                                                                                             N-12=1.SUY RA:N=1+12=13;N-12=-1 .SUY RA:N=-1+12=11;N-12=5.SUY RA:N=5+12=17:N-12=-5.SUY RA=-5+12=7                            VẬY N=13,11,17,7                                                                                                                                                                                            #NHỚ K CHO MK NHA

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

12 tháng 3 2017

a)Để a có giá trị nguyên thì \(\left(n+1\right)⋮\left(n-2\right)\)

\(\Rightarrow\left[\left(n+1\right)-\left(n-2\right)\right]⋮\left(n-2\right)\)

\(\Rightarrow\left(n+1-n+2\right)⋮\left(n-2\right)\)

\(\Rightarrow3⋮\left(n-2\right)\)

\(\Rightarrow n-2\in\){1;3;-1;-3}

\(\Rightarrow n\in\){3;5;1;-1}

Vậy với n\(\in\){3;5;1;-1} thì a có giá trị nguyên.

a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)

\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)

\(\Rightarrow3n-9-3n+12⋮n-4\)

\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)

\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)

\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)

b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)

\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)

\(\Rightarrow6n+5-6n+3⋮2n-1\)

\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)

Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

8 tháng 6 2019

* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4 

Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4 

Mà 3. ( n - 4 ) chia hết cho n - 4  

     3 . ( n - 4 ) + 21 chia hết cho n - 4  <=> 21 chia hết cho n - 4 

=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 } 

n - 4 = 1 => n = 5 

n - 4 = 3 => n = 7 

n - 4 = 7 => n = 11 

n - 4 = 21 => n = 25 

Vậy n = { 5 ; 7 ; 11 ; 25 }

19 tháng 6 2018

Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :

\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\left(n-4\right)+21⋮n-4\)

\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)

Rồi bạn lập bảng rồi tính giá trị ra

Tương tự câu b

\(6n+5=6n-1+6⋮6n-1\)

\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)

19 tháng 6 2018

a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4

                                                           hay 3n - 4 + 13 chia hết cho n - 4

                                                           nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )

                                                            do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}

                                                           hay n thuộc { -9;3;5;17}

Vậy n thuộc { -9;3;5;17}

b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1

hay 6n -1 + 6 chia hết cho 6n - 1

nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)

do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}

xét các trường hợp được n = 0

Vậy n = 0

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

11 tháng 2 2018

Các bn giúp mk vs mik đg cần gấp lắm nhé