K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

\(x^2+2y^2+2xy-2x+2y+5=0\)

\(\Leftrightarrow\left(x^2+2xy-2x+y^2-2y+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+2\right)^2=0\left(1\right)\)

Ta thấy: \(\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(x+y-1\right)^2+\left(y+2\right)^2\ge0\left(2\right)\)

Từ (1) và (2) suy ra \(\begin{cases}\left(x+y-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x+y-1=0\\y+2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x+y=1\\y=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x-2=1\\y=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x=3\\y=-2\end{cases}\)

Vậy các số x,y thỏa mãn là x=3; y=-2

 

24 tháng 12 2016

\(x^2+2y^2+2xy-2x+2y+5=0\)

\(\Leftrightarrow x^2-2x+2xy+1-2y+y^2+y^2+4y+4=0\)

\(\Leftrightarrow x^2-2x\left(1-y\right)+\left(1-y\right)^2+y^2+4y+4=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(x+y-1\right)=0and\left(y+2\right)^2=0\)

vậy x=3;y=-2

5 tháng 12 2018

Đề sai

5 tháng 7 2017

Ta có : x2 - 4x + y2 + 2y + 5 = 0

<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0

<=> (x - 2)2 + (y + 1)2 = 0

Mà (x - 2)2 \(\ge0\forall x\)

     (y + 1)2 \(\ge0\forall x\)

Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)

6 tháng 7 2017

còn 2 bài nữa giúp mik đi

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

24 tháng 6 2018

a) x2+2y2+2xy-2y+1=0

\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0

\(\Leftrightarrow\)(x+y)2+(y-1)2=0

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy x=-1, y=1

14 tháng 9 2020

a) x2 + y2 - 12x + 2y + 37 = 0

<=> (x2 - 12x + 36) + (y2 + 2y + 1) = 0

<=> (x - 6)2 + (y + 1)2 = 0 

<=> \(\hept{\begin{cases}x-6=0\\y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=6\\y=-1\end{cases}}\)

b) x2 + 2y2  - 2xy - 2x + 2 = 0

<=> (x2 - 2xy + y2) - 2(x - y) + 1 + (y2 - 2y + 1) = 0

<=> (x - y)2  - 2(x - y) + 1 + (y - 1)2 = 0

<=> (x - y - 1)2 + (y - 1)2 = 0

<=> \(\hept{\begin{cases}x-y-1=0\\y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y+1\\y=1\end{cases}}\)

 <=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

14 tháng 9 2020

a) x2 + y2 - 12x + 2y + 37 = 0

⇔ ( x2 - 12x + 36 ) + ( y2 + 2y + 1 ) = 0

⇔ ( x - 6 )2 + ( y + 1 )2 = 0

\(\hept{\begin{cases}\left(x-6\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-6\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ⇔ \(\hept{\begin{cases}x-6=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}\)

⇔ x = 6 ; y = -1

b) x2 + 2y2 - 2xy - 2x + 2 = 0

Nhân 2 vào từng vế

⇔ 2( x2 + 2y2 - 2xy - 2x + 2 ) = 2.0

⇔ 2x2 + 4y2 - 4xy - 4x + 4 = 0

⇔ ( x2 - 4xy + 4y2 ) + ( x2 - 4x + 4 ) = 0

⇔ ( x - 2y )2 + ( x - 2 )2 = 0

\(\hept{\begin{cases}\left(x-2y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-2y\right)^2+\left(x-2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ⇔ \(\hept{\begin{cases}x-2y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

⇔ x = 2 ; y = 1

13 tháng 10 2019

a) \(xy+x-y=2\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)

b) \(x-2xy+y=0\)

\(\Leftrightarrow2x-4xy+2y=0\)

\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Tương tự nha

13 tháng 10 2019

c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)