Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 - 4x + y2 + 2y + 5 = 0
<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0
<=> (x - 2)2 + (y + 1)2 = 0
Mà (x - 2)2 \(\ge0\forall x\)
(y + 1)2 \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)
......................?
mik ko biết
mong bn thông cảm
nha ................
a) x2+2y2+2xy-2y+1=0
\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0
\(\Leftrightarrow\)(x+y)2+(y-1)2=0
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x=-1, y=1
a) x2 + y2 - 12x + 2y + 37 = 0
<=> (x2 - 12x + 36) + (y2 + 2y + 1) = 0
<=> (x - 6)2 + (y + 1)2 = 0
<=> \(\hept{\begin{cases}x-6=0\\y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=6\\y=-1\end{cases}}\)
b) x2 + 2y2 - 2xy - 2x + 2 = 0
<=> (x2 - 2xy + y2) - 2(x - y) + 1 + (y2 - 2y + 1) = 0
<=> (x - y)2 - 2(x - y) + 1 + (y - 1)2 = 0
<=> (x - y - 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x-y-1=0\\y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y+1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
a) x2 + y2 - 12x + 2y + 37 = 0
⇔ ( x2 - 12x + 36 ) + ( y2 + 2y + 1 ) = 0
⇔ ( x - 6 )2 + ( y + 1 )2 = 0
\(\hept{\begin{cases}\left(x-6\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-6\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ⇔ \(\hept{\begin{cases}x-6=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}\)
⇔ x = 6 ; y = -1
b) x2 + 2y2 - 2xy - 2x + 2 = 0
Nhân 2 vào từng vế
⇔ 2( x2 + 2y2 - 2xy - 2x + 2 ) = 2.0
⇔ 2x2 + 4y2 - 4xy - 4x + 4 = 0
⇔ ( x2 - 4xy + 4y2 ) + ( x2 - 4x + 4 ) = 0
⇔ ( x - 2y )2 + ( x - 2 )2 = 0
\(\hept{\begin{cases}\left(x-2y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-2y\right)^2+\left(x-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ⇔ \(\hept{\begin{cases}x-2y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
⇔ x = 2 ; y = 1
a) \(xy+x-y=2\)
\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)
b) \(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Tương tự nha
c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
\(x^2+2y^2+2xy-2x+2y+5=0\)
\(\Leftrightarrow\left(x^2+2xy-2x+y^2-2y+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+2\right)^2=0\left(1\right)\)
Ta thấy: \(\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(x+y-1\right)^2+\left(y+2\right)^2\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\begin{cases}\left(x+y-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x+y-1=0\\y+2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x+y=1\\y=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x-2=1\\y=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x=3\\y=-2\end{cases}\)
Vậy các số x,y thỏa mãn là x=3; y=-2
\(x^2+2y^2+2xy-2x+2y+5=0\)
\(\Leftrightarrow x^2-2x+2xy+1-2y+y^2+y^2+4y+4=0\)
\(\Leftrightarrow x^2-2x\left(1-y\right)+\left(1-y\right)^2+y^2+4y+4=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(x+y-1\right)=0and\left(y+2\right)^2=0\)
vậy x=3;y=-2