Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10)\(\left(\dfrac{2x}{5}-1\right):\left(-5\right)=\dfrac{1}{4}\)
\(\dfrac{2x}{5}-1=\dfrac{1}{4}.\left(-5\right)\)
\(\dfrac{2x}{5}-1=-\dfrac{5}{4}\)
\(\dfrac{2x}{5}=-\dfrac{5}{4}+1\)
\(\dfrac{2x}{5}=-\dfrac{1}{4}\)
\(\dfrac{8x}{20}=-\dfrac{5}{20}\)
\(\Leftrightarrow8x=-5\)
\(\Rightarrow x=-5:8\)
\(x=-\dfrac{5}{8}\)
12)\(\left(3\dfrac{1}{4}:x\right).\left(-1\dfrac{1}{4}\right)=-\dfrac{5}{3}-\dfrac{5}{6}\)
\(\left(\dfrac{13}{4}:x\right).\left(-\dfrac{5}{4}\right)=-\dfrac{5}{2}\)
\(\dfrac{13}{4}:x=-\dfrac{5}{2}:\left(-\dfrac{5}{4}\right)\)
\(\dfrac{13}{4}:x=2\)
\(x=\dfrac{13}{4}:2\)
\(x=\dfrac{13}{8}\)
1.
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...........+\dfrac{1}{8.9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+............+\dfrac{2}{8.9.10}\right)\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+........+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{8.9}\right)\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\left[\dfrac{1}{2}.\dfrac{22}{45}\right]x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{11}{45}.x=\dfrac{23}{45}\)
\(\Leftrightarrow x=\dfrac{23}{11}\)
Vậy \(x=\dfrac{23}{11}\) là giá trị cần tìm
2.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{1}{x\left(x+1\right):2}=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...............+\dfrac{2}{x\left(x+1\right)}=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...........+\dfrac{2}{x\left(x+1\right)}=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+.........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{999}{2000}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2000}\)
\(\Leftrightarrow x+1=2000\)
\(\Leftrightarrow x=1999\)
Vậy \(x=1999\) là giá trị cần tìm
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\)
\(\Rightarrow\dfrac{-2}{17}\le\dfrac{x}{17}\le\dfrac{2}{17}\)
\(\Rightarrow-2\le x\le2\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{6}{12}-\dfrac{2}{12}\right)\)
\(\Rightarrow\dfrac{2}{3}\cdot\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}\cdot\dfrac{4}{12}\)
\(\Rightarrow\dfrac{22}{36}\le\dfrac{x}{18}\le\dfrac{28}{36}\)
\(\Rightarrow\dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\)
\(\Rightarrow x\in\left\{11;12;13;14\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{3}{6}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}.\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}.\dfrac{2}{6}\\ \dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\\ \Rightarrow11\le x\le14\\ \Rightarrow x\in\left\{11;12;13;14\right\}\)
1) \(\dfrac{5}{3}-x+\dfrac{1}{5}=\dfrac{-3}{10}\\ x+\dfrac{1}{5}=\dfrac{5}{3}-\left(\dfrac{-3}{10}\right)\\ x+\dfrac{1}{5}=\dfrac{5}{3}+\dfrac{3}{10}\\ x+\dfrac{1}{5}=\dfrac{59}{30}\\ x=\dfrac{59}{30}-\dfrac{1}{5}\\ x=\dfrac{53}{30}\)
2) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\\ \dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\\ \dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{8}{12}\\ \dfrac{2}{5}+x=\dfrac{1}{4}\\ x=\dfrac{1}{4}-\dfrac{2}{5}\\ x=\dfrac{-3}{20}\)
a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)
<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)
<=>\(4x-17=0\)
<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)
1) \(\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{-7}{4}+\dfrac{1}{4}:\dfrac{1}{8}\)
\(\Leftrightarrow\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{-7}{4}+2\)
\(\Leftrightarrow\left(-1\dfrac{1}{5}+x\right):\left(-3\dfrac{3}{5}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-3\dfrac{3}{5}\right)\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=\dfrac{1}{4}.\left(-\dfrac{18}{5}\right)\)
\(\Leftrightarrow-1\dfrac{1}{5}+x=-\dfrac{9}{10}\)
\(\Leftrightarrow x=\left(-\dfrac{9}{10}\right)-\left(-1\dfrac{1}{5}\right)\)
\(\Leftrightarrow x=\dfrac{3}{10}\)
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)\(\Rightarrow x+3=308\Rightarrow x=305\)
a/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)
b/ \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}.3\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+......+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\)
\(\Leftrightarrow x=305\)
Vậy ..
c/ \(1+\dfrac{1}{3}+\dfrac{1}{6}+........+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
\(\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+.......+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{4016}{2009}.\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)
\(\Leftrightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
Vậy ..
bài 1:
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
ta thấy 2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^9}\)
=>2A-A=\(1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)
\(\dfrac{1.2}{3.2}+\dfrac{1.2}{6.2}+.....+\dfrac{1.2}{2\left(x+1\right):2.2}\)=\(\dfrac{1998}{2000}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+.....+\dfrac{2}{x\left(x+1\right)}\)=\(\dfrac{1998}{2000}\)
\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{1998}{2000}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1998}{2000}:2\)
\(\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{999}{2000}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2000}\)
suy ra x+1=2000
suy ra x=2000-1=1999