Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4x^2-12x+11\)
\(A=\left(2x\right)^2-2.2x.3+3^2+2\)
\(A=\left(2x-3\right)^2+2\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)
\(B=x^2-2x+y^2+4y+6\)
\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)
\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)
\(A=-x^2-6x+1\)
\(\Rightarrow-A=x^2+6x-1\)
\(-A=\left(x^2+2.3x+3^2\right)-10\)
\(-A=\left(x+3\right)^2-10\)
\(\Rightarrow A=-\left(x+3\right)^2+10\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)
Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy Amax=10\(\Leftrightarrow\)x= -3
Sửa đề:
\(B=-2x^2-8x-6\)
\(B=-2.\left(x^2+2.2x+2^2\right)+2\)
\(B=-2.\left(x+2\right)^2+2\)
Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)
Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy Bmax=2\(\Leftrightarrow x=-2\)
Đề phải là tìm min mới đúng
a, A=4x2-12x+11
=(4x2-12x+9)+2
=(2x-3)2+2
Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2
Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2
Vậy Amin = 2 khi x=3/2
b, B=x2-2x+y2+4y+6
=(x2-2x+1)+(y2+4y+4)+1
=(x-1)2+(y+2)2+1
Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu "=" xảy ra khi x=1,y=-2
Vậy Bmin = 1 khi x=1,y=-2
a. \(9x^2+25-12xy+5y^2-10y\)
\(=\left(9x^2-12xy+4y^2\right)+\left(25+y^2-10y\right)\)
\(=9\left(x^2-\frac{4xy}{3}+\frac{4y^2}{9}\right)+\left(5-y\right)^2\)
\(=9\left(x-\frac{2y}{3}\right)^2+\left(5-y\right)^2\)
1. \(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
2. \(4x^2-4x+y^2+2y+2\)
\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
3. \(4x^2+4x+4y^2+4y+2\)
\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)
4. \(4x^2+y^2+12x+4y+13\)
\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)
\(=\left(2x+3\right)^2+\left(y+2\right)^2\)
\(x^2-2x+2+4y^2+4y\)
\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2\)
\(4x^2-4x+y^2+2y+2\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2\)
a) 9x2 + 25 - 12xy + 5y2 - 10y
= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )
= ( 3x - 2y )2 + ( y - 5 )2
b) 13x2 + 4x + 12xy + 4y2 + 1
= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )
= ( 3x + 2y )2 + ( 2x + 1 )2
c) x2 + 20 + 9y2 + 8x - 12y
= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )
= ( x + 4 )2 + ( 3y - 2 )2
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
a/ 9x2-12xy+4y2 = (3x - 2y)2
b/ 25x2-10x+1 = (5x - 1)2
c/ 9x2-12x+4 = (3x - 2)2
d/ 4x2+20x+25 = (2x + 5)2
e/ x4-4x2+4 = (x2 - 2)2
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
a: \(C=4x^2-12x+9+y^2+4y+4+2017\)
\(=\left(2x-3\right)^2+\left(y+2\right)^2+2017\ge2017\)
Dấu '=' xảy ra khi x=3/2 và y=-2
b: \(D=9x^2-12xy+4y^2+4x^2+4x+1-16\)
\(=\left(3x-2y\right)^2+\left(2x+1\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-1/2 và y=-3/4