K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(C=4x^2-12x+9+y^2+4y+4+2017\)

\(=\left(2x-3\right)^2+\left(y+2\right)^2+2017\ge2017\)

Dấu '=' xảy ra khi x=3/2 và y=-2

b: \(D=9x^2-12xy+4y^2+4x^2+4x+1-16\)

\(=\left(3x-2y\right)^2+\left(2x+1\right)^2-16\ge-16\)

Dấu '=' xảy ra khi x=-1/2 và y=-3/4

26 tháng 6 2018

\(A=4x^2-12x+11\)

\(A=\left(2x\right)^2-2.2x.3+3^2+2\)

\(A=\left(2x-3\right)^2+2\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu = xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Vậy Amin=2\(\Leftrightarrow x=\frac{3}{2}\)

\(B=x^2-2x+y^2+4y+6\)

\(B=\left(x^2-2x+1\right)+\left(y^2+2.2y+2^2\right)+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\)

Ta có:  \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y}\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin=1\(\Leftrightarrow x=1;y=-2\)

\(A=-x^2-6x+1\)

\(\Rightarrow-A=x^2+6x-1\)

\(-A=\left(x^2+2.3x+3^2\right)-10\)

\(-A=\left(x+3\right)^2-10\)

\(\Rightarrow A=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu = xảy ra \(\Leftrightarrow-\left(x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy Amax=10\(\Leftrightarrow\)x= -3

Sửa đề:

\(B=-2x^2-8x-6\)

\(B=-2.\left(x^2+2.2x+2^2\right)+2\)

\(B=-2.\left(x+2\right)^2+2\)

Ta có: \(2.\left(x+2\right)^2\ge0\forall x\Rightarrow-2.\left(x+2\right)^2\le0\forall x\Rightarrow-2.\left(x+2\right)^2+2\le2\forall x\)

Dấu = xảy ra \(\Leftrightarrow-2.\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy Bmax=2\(\Leftrightarrow x=-2\)

26 tháng 6 2018

Đề phải là tìm min mới đúng

a, A=4x2-12x+11

=(4x2-12x+9)+2

=(2x-3)2+2

Vì (2x-3)2 \(\ge\) 0 => A=(2x-3)2+2 \(\ge\) 2

Dấu "=" xảy ra khi 2x-3=0 <=> x=3/2

Vậy Amin = 2 khi x=3/2

b, B=x2-2x+y2+4y+6

=(x2-2x+1)+(y2+4y+4)+1

=(x-1)2+(y+2)2+1

Vì \(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

\(\Rightarrow B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x=1,y=-2

Vậy Bmin = 1 khi x=1,y=-2

20 tháng 8 2020

a. \(9x^2+25-12xy+5y^2-10y\)

\(=\left(9x^2-12xy+4y^2\right)+\left(25+y^2-10y\right)\)

\(=9\left(x^2-\frac{4xy}{3}+\frac{4y^2}{9}\right)+\left(5-y\right)^2\)

\(=9\left(x-\frac{2y}{3}\right)^2+\left(5-y\right)^2\)

22 tháng 8 2018

1. \(x^2-2x+2+4y^2+4y\)

\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

2. \(4x^2-4x+y^2+2y+2\)

\(=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2\)

3. \(4x^2+4x+4y^2+4y+2\)

\(=\left(4x^2+4x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(2x+1\right)^2+\left(2y+1\right)^2\)

4. \(4x^2+y^2+12x+4y+13\)

\(=\left(4x^2+12x+9\right)+\left(y^2+4y+4\right)\)

\(=\left(2x+3\right)^2+\left(y+2\right)^2\)

3 tháng 9 2018

\(x^2-2x+2+4y^2+4y\)

\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\)

\(4x^2-4x+y^2+2y+2\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2\)

20 tháng 8 2020

a) 9x2 + 25 - 12xy + 5y2 - 10y

= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )

= ( 3x - 2y )2 + ( y - 5 )2

b) 13x2 + 4x + 12xy + 4y2 + 1

= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )

= ( 3x + 2y )2 + ( 2x + 1 )2

c) x2 + 20 + 9y2 + 8x - 12y

= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )

= ( x + 4 )2 + ( 3y - 2 )2

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

29 tháng 6 2019

a/ 9x2-12xy+4y2 = (3x - 2y)2

b/ 25x2-10x+1 = (5x - 1)2

c/ 9x2-12x+4 = (3x - 2)2

d/ 4x2+20x+25 = (2x + 5)2

e/ x4-4x2+4 = (x- 2)2

29 tháng 6 2019

a/\(\left(3x-2y\right)^2\)

b/\(\left(5x-1\right)^2\)

c/\(\left(3x-2\right)^2\)

d/\(\left(2x+5\right)^2\)

e/\(\left(x-2\right)^2\)

13 tháng 7 2017

a)  2x2 - 98 = 0

     2x2        = 0 + 98

     2x2        = 98

       x2        = 98 : 2

       x2         = 49

       x          = \(\sqrt{49}\)

=>   x   = 7

13 tháng 7 2017

Ta có : 2x2 - 98 = 0

=> 2(x2 - 49) = 0

Mà : 2 > 0

Nên x2 - 49 = 0

=> x2 = 49

=> x2 = -7;7