K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Bài 1:

a, \(A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)

Vậy \(MIN_A=3,7\) khi x = 4,3

b, \(B=\left|3x+\dfrac{41}{5}\right|-14,2\ge-14,2\)

Dấu " = " khi \(\left|3x+\dfrac{41}{5}\right|=0\Rightarrow x=\dfrac{-41}{15}\)

Vậy \(MIN_B=-14,2\) khi \(x=\dfrac{-41}{15}\)

c, \(C=\left|4x-3y\right|+\left|5y+7,5\right|\ge17,5\)

( do \(\left|4x-3y\right|+\left|5y+7,5\right|\ge0\) )

Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3y\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Vậy \(MIN_C=17,5\) khi \(\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Bài 2:

a, \(A=5,5-\left|2x-1,5\right|\le5,5\)

Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)

Vậy \(MIN_A=5,5\) khi x = 0,75

b, c tương tự

12 tháng 3 2017

Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?

Bạn kiểm tra lại nha

12 tháng 3 2017

xin lỗi z chứ ko phải là 2

2 tháng 6 2017

a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)

Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)

19 tháng 9 2016

Ta có : \(E=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|8-x\right|\right)+\left(\left|7-x\right|+\left|x+2\right|\right)\)

                \(\ge\left|x+5+8-x\right|+\left|7-x+x+2\right|=22\)

Dấu "=" xảy ra khi \(\begin{cases}-5\le x\le8\\-2\le x\le7\end{cases}\) \(\Rightarrow-2\le x\le7\)

Vậy MIN E = 22 khi \(-2\le x\le7\)

23 tháng 3 2017

\(a.M+(5x^2-2xy)=6x^2+9xy-y^2 \)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M= \) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)



24 tháng 3 2017

a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)

=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)

M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy

M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)

M = 1x\(^2\) + 11xy - y\(^2\)

a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)

=>x+1=0

hay x=-1

b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>x-2010=0

hay x=2010

c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)

=>x=15

8 tháng 6 2017

b,

\(B=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow B=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

\(\Rightarrow B=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)

\(\Rightarrow B=\frac{-1997}{1999}-\frac{1}{2000}\)

8 tháng 6 2017

Cảm ơn bn!Mặc dù mik chư hiểu z hết!haha

4 tháng 8 2017

- Từ đề bài

=>\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)\(=\dfrac{x-y-x+y+xy}{1-7+24}=\dfrac{\left(x-x\right)+\left(-y+y\right)+xy}{18}=\dfrac{xy}{18}\)

=> xy \(\in\) bội chung của 18.

- Vậy xy \(\in\) bội chung của 18.

( mình làm theo cách của mình nên cx chưa phải là chính xác nhé.)

4 tháng 8 2017

Theo bài ra ta có : \(\left(x-y\right)\div\left(x+y\right)\div xy=1\div7\div24\)

\(\Rightarrow\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{xy}{24}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{x-y}{1}=\dfrac{x+y}{7}=\dfrac{\left(x-y\right)+\left(x+y\right)}{1+7}\\ =\dfrac{x-y+x+y}{8}\\ =\dfrac{\left(x+x\right)-\left(y-y\right)}{8}\\ =\dfrac{2x}{8}\\ =\dfrac{x}{4}\)

Tương tự :

\(\dfrac{x+y}{7}=\dfrac{x-y}{1}=\dfrac{\left(x+y\right)-\left(x-y\right)}{7-1}\\ =\dfrac{x+y-x+y}{6}\\ =\dfrac{\left(x-x\right)+\left(y+y\right)}{6}\\ =\dfrac{2y}{6}\\ =\dfrac{y}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{24}=\dfrac{x}{4}\\\dfrac{xy}{24}=\dfrac{y}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4xy=24x\\3xy=24y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{24x}{4x}\\x=\dfrac{24y}{3y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=6\\x=8\end{matrix}\right.\)

Vậy \(x;y=\left\{6;8\right\}\)