Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+\frac{1}{x}+\frac{1}{9}\right)\left(x-\frac{1}{3}\right)-\left(x-\frac{1}{3}\right)^3\)
\(=\left[x^3-\left(\frac{1}{3}\right)^3\right]-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)^3-\left(x-\frac{1}{3}\right)^3\)
\(=\left(x-\frac{1}{3}\right)\left[x^2+\frac{1}{x}+\frac{1}{9}-\left(x-\frac{1}{3}\right)^2\right]\)
\(=\left(x-\frac{1}{3}\right)\left(\frac{1}{x}+\frac{2x}{3}\right)\)
\(=\frac{3x-1}{3}\times\frac{3+2x^2}{3x}\)
\(=\frac{9x+6x^2-3-2x^2}{9x}\)
\(=\frac{4x^2+9x-3}{9x}\)
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
\(a,x^2+4y^2-4xy\)
\(\Rightarrow\)\(x^2-4xy+\left(2y\right)^2\)
\(\Rightarrow\)\(\left(x-2y\right)^2\)
a, x2 +4y2 -4xy = x2 - 4xy +4y2 = (x - 2y)2
b, x2 y4 +1 - 2xy2 - 9 = x2y4 - 2xy2 +1 -9 =( x2y4 -2xy2 +1)
= (xy2 -1 )2 - 9 =(xy2 -1+3)(xy2 - 1-3)
c, x2- 4x -3 = x2 - 4x +4 - 7
= ( x - 2)2 -7
d, C1 : x2 -8x + 7 = x2 -x -7x +7
= (x2 - x) - (7x +7)
= x(x-1) - 7(x-1)
= ( x - 1)(x - 7)
C2 : x2 - 8x + 7
= x2 - 8x + 16 - 9
= (x2 - 8x +16) -9
= (x - 4 )2 -9
= ( x - 4 +3 )(x - 4 -3 )
=( x - 1 ) (x - 7 )
Good luck !
Bn ko hiểu j cứ hỏi mik nhé !
1) \(4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
2) \(8x^3-27=\left(2x-3\right)\left(4x^2+6x+9\right)\)
3) \(x^3+27y^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
4) \(x^2-25y^2=\left(x-5y\right)\left(x+5y\right)\)
5) \(8x^3+\frac{1}{27}=\left(2x+\frac{1}{3}\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)\)
\(\left(x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x-1\right)-\left(x^2-2^2\right)\)
\(=\left(x-1\right)-x^2+2^2\)
\(=x-1-x^2+2^2\)
\(=x-x^2+\left(2-1\right)\left(2+1\right)\)
\(=x-x^2+3\)
a/ (x-1)2-(x-2)(x+2)
=(x-1)-(x2-22)
=(x-1)-x2-22
=x-x2 +(2-1)(2+1)
=x-x2+3
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)