Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
BACDH
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )
BACDH
+ Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD
=> DH \(\perp\)CD
+ Áp dụng định lý Pitago vào ▲vuông DHC có :
DC2 = DH2 + CH2 (1)
+ Xét ▲vuông ABC có : AH là đường trung tuyến ứng vs cạnh huyền.
=> AH = \(\frac{BC}{2}\)=CH (2)
Từ (1) và (2) có :
DC2 = DH2 + CH2 = DH2 + AH2 ( đpcm )