K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Mình k chép lại đề nha!

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}=\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{2x+3y-z-4}{2+3-4}=46\)

Suy ra; x-1/2 => x-1=92 => x=93

y-2/3 => y-2=138 => y=140

z-4/4=46 => z-4= 184 => z=188

Vậy x=93

y=140

z=188

26 tháng 7 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}\)

\(\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-4}{4}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{2x-2+3y-6-z+4}{4+9-4}=\dfrac{\left(2x+3y-z\right)-2-6+4}{9}=\dfrac{54}{9}=6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=6\Rightarrow x-1=12\Rightarrow x=13\\\dfrac{y-2}{3}=6\Rightarrow y-2=18\Rightarrow y=20\\\dfrac{z-4}{4}=6\Rightarrow z-4=24\Rightarrow z=28\end{matrix}\right.\)

b) áp dụng giống.

\(2\) )

\(B=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{4}\right)\)

\(B=\dfrac{2y}{x}.\dfrac{x+z}{z}.\dfrac{4+z}{4}\)

\(B=\dfrac{2y\left(x+z\right)\left(4+z\right)}{4xz}\)

\(B=\dfrac{\left(2xy+2yz\right)\left(4+z\right)}{4xz}\)

\(B=\dfrac{8xy+2xyz+8yz+2yz^2}{4xz}\)

16 tháng 11 2017

ủa sao ngộ z ?

16 tháng 11 2017

bn dợi mk lát nhé

17 tháng 11 2017

phần a sai đề ak?

phải là \(\frac{z+y+1}{y} \) chứ

17 tháng 11 2017

\(\frac{y+z+1}{x} \)

12 tháng 6 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)

\(\Rightarrow x=y=z=t\)

Thay vào P ta được :

\(P=1+1+1+1=4\)

12 tháng 6 2017

cảm ơn bn nhé!

10 tháng 8 2017

a) Ta có :

\(x+y=29\)

\(\dfrac{2x}{5}=\dfrac{3y}{7}\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{42}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{14}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{15}=\dfrac{y}{14}=\dfrac{x+y}{15+14}=\dfrac{29}{29}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{15}=1\Leftrightarrow x=15\\\dfrac{y}{14}=1\Leftrightarrow x=14\end{matrix}\right.\)

Vậy .......

10 tháng 8 2017

Câu a .Theo đề bài ta có :

\(\dfrac{2x}{5}=\dfrac{3y}{7}\) \(\Rightarrow\) \(\dfrac{2x}{30}=\dfrac{3y}{42}\) \(\Rightarrow\) \(\dfrac{x}{15}=\dfrac{y}{14}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{15}=\dfrac{y}{14}=\dfrac{x+y}{15+14}=\dfrac{29}{29}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{15}=1\Rightarrow x=15\\\dfrac{y}{14}=1\Rightarrow y=14\end{matrix}\right.\)

Câu b : Theo đề bài ta có :

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}=\dfrac{-x}{-5}=\dfrac{y}{1}=\dfrac{2z}{-4}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{-x}{-5}=\dfrac{y}{1}=\dfrac{2z}{-4}=\dfrac{-x-y+2z}{-5-1-4}=\dfrac{160}{-10}=-16\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-x}{-5}=-16\Rightarrow x=-80\\\dfrac{y}{1}=-16\Rightarrow y=-16\\\dfrac{2z}{-4}=-16\Rightarrow z=32\end{matrix}\right.\)

Câu c : Tương tự như câu a

Câu d : Theo đề bài ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}\)\(x^2-y^2=-4\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x^2-y^2}{3^2-5^2}=\dfrac{-4}{-16}=\dfrac{1}{4}\)

\(\left[{}\begin{matrix}\dfrac{x}{3}=\dfrac{1}{4}\Rightarrow x=\dfrac{3}{4}\\\dfrac{y}{5}=\dfrac{1}{4}\Rightarrow y=\dfrac{5}{4}\end{matrix}\right.\)

Kêu người ta giúp mà ói vào mặt người ta vậy à?

10 tháng 8 2017

Bất lịch sự ucche

10 tháng 6 2017

Ta có: \(\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\left(1\right)\\y+z=\dfrac{1}{3}\left(2\right)\\z+x=\dfrac{1}{4}\left(3\right)\end{matrix}\right.\)

Cộng (1); (2); (3) vế theo vế ta được:

\(2\left(x+y+z\right)=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)

=> \(2\left(x+y+z\right)=\dfrac{13}{12}\)

=> \(x+y+z=\dfrac{13}{24}\)

+) Mà \(x+y=\dfrac{1}{2}\) => \(z=\dfrac{13}{24}-\dfrac{1}{2}\) = \(\dfrac{1}{24}\)

+) Mà y + z = \(\dfrac{1}{3}\) => \(\left\{{}\begin{matrix}y=\dfrac{1}{3}-\dfrac{1}{24}\\x=\dfrac{13}{24}-\dfrac{1}{3}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=\dfrac{7}{24}\\x=\dfrac{5}{24}\end{matrix}\right.\) (TM)

Vậy \(x=\dfrac{5}{24};y=\dfrac{7}{24};z=\dfrac{1}{24}\)

P/s: Bài này có nhiều cách giải lắm!

10 tháng 6 2017

x + y=1/2

y + z=1/3

z + x=1/4

=> x + y + y + z + z + x = 1/2 + 1/3 + 1/4 = 13/12

hay: 2(x + y + z ) = 13/12

x + y + z = 13/12 :2

x + y + z = 13/24

x = 13/24 - 1/3 = 5/24

y = 13/24 - 1/4 = 7/24

z = 13/24 - 1/2 = 1/24

Vậy ...

28 tháng 10 2017

1) Tìm x, biết :

a) \(\dfrac{x-1}{3}=\dfrac{x+1}{5}\)

=> \(5\left(x-1\right)=3\left(x+1\right)\)

=> \(5x-5=3x+3\)

=> \(5x-5-3=3x\)

=> \(5x-8=3x\)

=> \(8=5x-3x\)

=> \(8=2x\)

=> x = 8 : 2

=> x = 4

28 tháng 10 2017

B thì sao

13 tháng 6 2017

b, \(\dfrac{x^3+y^3}{6}\) = \(\dfrac{x^3-2y^3}{4}\)và x6.y6=64

=>(x3+y3 ).4=(x3-2y3).6

=>4x3+4y3=6x3-12y3

=> 4y3 + 12y3= 6x3-4x3

=> 15y3=2x3

Làm được thế này thoy

a)Vì \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\Rightarrow\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}=\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=2\Rightarrow x=8\\\dfrac{3y}{9}=2\Rightarrow y=6\\\dfrac{4z}{36}=2\Rightarrow z=18\end{matrix}\right.\)

b) Câu này không chứa z

c) Vì \(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}\)

\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20};\dfrac{y}{5}=\dfrac{z}{8}\)

\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20};\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{-x+y+z}{-7+20+32}=\dfrac{-120}{45}=\dfrac{24}{9}\)