Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)
b: Thay x=1/2 vào A, ta được:
\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)
c: Để A là số nguyên thì \(x-1+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3\right\}\)
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
\(a,x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
- Thay \(x=0\) vào biểu thức A, ta được :
\(\frac{0-5}{0-4}=\frac{-5}{-4}=\frac{5}{4}\)
- Thay \(x=3\) vào biểu thức A, ta được :
\(\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
\(b,B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{x+5}{2x}+\frac{x-6}{x-5}+\frac{-\left(2x^2-2x-50\right)}{2x\left(x-5\right)}\)
\(=\frac{\left(x+5\right)\left(x-5\right)}{2x\left(x-5\right)}+\frac{2x\left(x-6\right)}{2x\left(x-5\right)}+\frac{-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right).\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
\(\Leftrightarrow Q=\left(\frac{x\left(2-x\right)}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right).\frac{2+x\left(1-x\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{-x\left(x-2\right)^2-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{2+x-x^2}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2-4x+4\right)-4x^2}{2\left(x-2\right)\left(x^2+4\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(\Leftrightarrow Q=\frac{x\left(x^2+4\right)}{2\left(x^2+4\right)}.\frac{x+1}{x^2}\)
\(\Leftrightarrow Q=\frac{x+1}{2x}\)
b) Để \(Q\inℤ\)
\(\Leftrightarrow x+1⋮2x\)
\(\Leftrightarrow2\left(x+1\right)⋮2x\)
\(\Leftrightarrow2x+2⋮2x\)
\(\Leftrightarrow2⋮2x\)
\(\Leftrightarrow2x\inƯ\left(2\right)\)
\(\Leftrightarrow2x\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{\pm\frac{1}{2};\pm1\right\}\)
Mà \(x\inℤ\)
Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
Đây là 1 bài trong 1 đề t làm nộp gửi thầy nên t đưa ảnh nha,tại lúc đó đề sai nên trong bài giải có vài chữ ko liên quan
Làm tiếp \(M\ge-3\)
\(\frac{x+1}{2x}\ge-3\)
\(\frac{1}{2}+\frac{1}{2x}\ge-3\)
Đến đây dễ r