Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
MQ là đường trung bình nên \(MQ//AC\)
NP là đường trung bình nên \(NP//CB\)
Khi đó \(NP//MQ\) suy ra tứ giác MNPQ là hình thang ( 1 )
Gọi K là trung điểm của DE
Ta có:
KN là đường trung bình nên \(KN//EC\)
KM là đường trung bình nên \(KM//AD\)
Mà \(EC//AD\) vì có một cặp góc đồng vị bằng nhau và cùng bằng 600
\(\Rightarrow\overline{K,N,M}\)
Lại có:\(\widehat{KME}=\widehat{DAE};\widehat{EMQ}=\widehat{EAB}\)
\(\Rightarrow\widehat{KME}+\widehat{EMQ}=\widehat{DAE}+\widehat{EAB}\Rightarrow\widehat{KMQ}=60^0\)
Mà \(MQ//NP\Rightarrow\widehat{KMQ}=\widehat{MNP}=60^0\)
Chứng minh tương tự ta cũng có:\(\widehat{KQM}=\widehat{QPN}=60^0\)
Khi đó thì \(\widehat{MNP}=\widehat{QPN}=60^0\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra tứ giác MNPQ là hình thang cân
b
Do tứ giác MNPQ là hình thang cân nên \(MP=NQ=\frac{DE}{2}\)
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.