K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Bài 1:

b) Ta có:

\(16^5=2^{20}\)

\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)

\(\Rightarrow B=2^{15}.2^5+2^{15}\)

\(\Rightarrow B=2^{15}\left(2^5+1\right)\)

\(\Rightarrow B=2^{15}.33\)

\(\Rightarrow B⋮33\) (Đpcm)

c) \(C=5+5^2+5^3+5^4+...+5^{100}\)

\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)

\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)

\(\Rightarrow C=Q.30\)

\(\Rightarrow C⋮30\) (Đpcm)

26 tháng 2 2017

Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)

Vậy \(A⋮3\)

b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)

\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)

\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

Vậy \(B⋮33\)

c, Tương tự câu a nhưng nhóm 2 số

Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)

\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)

Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài

b, \(2n+7⋮n+1\)

Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)

\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)

Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài

c, tương tự phần b

d, Vì : \(4n+3⋮2n+6\)

Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)

\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)

\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)

\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)

Vậy \(n\in\varnothing\)

12 tháng 7 2018

a, Ta có : \(7^6+7^5-7^4\)

\(=7^4.7^2+7^4.7+7^4.1=7^4.49+7^4.7+7^4.1\)

\(=7^4.\left(49+7-1\right)\)

\(=7^4.55\) \(⋮\) \(55\) (vì \(55⋮55\))

Vậy \(7^6+7^5-7^4⋮55\)

b, Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.2.5-2^{n-1}.2.5\)

\(=2.5.\left(3^n-2^{n-1}\right)\) chia hết cho 2 và 5( vì \(2⋮2\) ; \(5⋮5\) )

Vậy \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 2 và 5

13 tháng 7 2018

ko có gì đâu

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha

n+3 =n-1 +4 : hết cho n-1 mà n-1 :hết cho n-1 =>4 : hết cho n-1 =>n-1 thuộc Ư(4) =>tìm n

3n-4=3n-9+5=3(n-3)+5 :hết cho n-3 mà 3(n-3) :hết cho n-3 =>5 : hết cho n-3=> tương tự

3n+2=3n+12-10=3(n+4)-10 ....

\(T=3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3T=3^2+3^3+3^4+....+3^{100}\)

\(\Rightarrow3T-T=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+....+3^{99}\right)\)

\(\Rightarrow2T=3^{100}-3\)

\(\Rightarrow2T+3=3^{2n}=2.\frac{3^{100}-3}{2}+3=3^{2n}\)

\(\Rightarrow3^{100}-3+3=3^x\)

\(\Rightarrow3^{100}=3^x\)

\(\Rightarrow x=100\)

22 tháng 7 2016

a)3T=3(3+32+...+399)

3T=32+33+...+3100

3T-T=(32+33+...+3100)-(3+32+...+399)

2T=3100-3.THay vào ta được 3100-3+3=32n

=>3100=32n =>100=2n =>n=50

b)5A=5(52+53+...+52012)

5A=53+54+...+52013

5A-A=(53+54+...+52013)-(52+53+...+52012)

4A=52013-52.Thay vào ta được :52013-52+25=52013 là 1 lũy thừa của 5

-->Đpcm

c)4C=4(1+4+...+4100)

4C=4+42+...+4101

4C-C=(4+42+...+4101)-(1+4+...+4100)

3C=4101-1 suy ra \(C=\frac{4^{101}-1}{3}\).Với \(\frac{B}{3}=\frac{4^{101}}{3}>\frac{4^{101}-1}{3}=C\)

-->Đpcm

22 tháng 7 2016

\(T=3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3T=3^2+3^3+3^4+.....+3^{100}\)

\(\Rightarrow3T-T=3^{100}-3\)

\(\Rightarrow2T=3^{100}-3\)

\(\Rightarrow2T+3=3^{100}\)

Mà đầu bài cho \(2T+3=3^{2n}\)

Nên 2n = 100

=> n = 10

9 tháng 12 2018

Bài 1 :

Lý luận chung cho cả 2 câu a) và b) :

Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0

a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)