K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

a, x3 - x2 - x + 1

= x\(^2\) ( x - 1 ) - (x - 1 )

= ( x\(^2\) - 1 ) (x - 1 )

b, x2y2 + 1 - x2 - y2

= ( \(x^2y^2\) - \(x^2\) ) - ( \(y^2\) - 1 )

= \(x^2\) ( \(y^2-1\)) - ( \(y^2-1\) )

= ( \(x^2-1)\left(y^2-1\right)\)

c, x4 - x2 + 2x - 1

= \(x^4\) - (\(x^2\) - 2x + 1 )

= (x\(^2\))\(^2\) - (x - 1 )\(^2\)

= ( x\(^2\) - x + 1 ) (x\(^2\) + x -1 )

e, x2 - y2 - 2x - 2y

= (x - y ) ( x + y ) - 2 ( x + y )

= ( x - y - 2 ) ( x+ y )

f, x2 - y2 + 2y - 1

= x\(^2\) - ( y\(^2\) - 2y + 1 )

= x\(^2\) - ( y - 1 )\(^2\)

= (x - y +1 ) ( x+y - 1)

14 tháng 8 2015

a/ \(=3y^2-6y-2x+1\)

b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

c/ \(=\left(2-x\right)^3\)

d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)

\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)

\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)

e/ \(=xy-x^2+2x-y^2+xy-2y\)

\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)

14 tháng 8 2015

a) =(2x+3y-1)2

b)=-(x-1)3

c)=-(x3-6x2+12x-8)=-(x-2)3

d)x3 + 2x2y + xy2 – 9x

    = x(x2 + 2xy + y2 -9)

    = x[(x2 + 2xy + y2) - 32]

    = x[(x + y)2 - 32]

    = x (x + y – 3)(x + y + 3)

e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

1 tháng 7 2018

\(a)\) \(x^2-2x-4y^2-4y\)

\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)

\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)

\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)

\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)

\(=\)\(2\left(x-y\right)\left(x+2y\right)\)

Chúc bạn học tốt ~ 

a) Ta có x- 2x - 4y- 4y

= x2 - 2x + 1 - 4y2 - 4y - 1 

= (x - 1)2 - (4y2 + 4y + 1)

=  (x - 1)2 - (2y + 1)2

= (x - 1 - 2y  - 1)(x - 1 + 2y + 1)

= (x  - 2y - 1)(x + 2y)

19 tháng 8 2020

Bài làm:

a) \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(\left(x-y\right)\left(x-y-z\right)\)

19 tháng 8 2020

a/ \(x^2-2xy+y^2-zx+yz.\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c/ \(x^2-y^2-2x-2y.\)

\(=x^2-2x+1-y^2-2y-1\)

\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

18 tháng 8 2020

a)

\(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

b)

\(=a\left(a-b\right)+a-b\)

\(=\left(a+1\right)\left(a-b\right)\)

c)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left(x+1-y\right)\left(x+1+y\right)\)

d)

\(=x^3\left(x-2\right)+10x\left(x-2\right)\)

\(=x\left(x^2+10\right)\left(x-2\right)\)

e)

\(=x\left(x^2+2x+1\right)\)

\(=x\left(x+1\right)^2\)

f)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right)\left(x+y\right)\)

18 tháng 8 2020

a,2x3+3x2+2x+3

=(2x3+2x)+(3x2+3)

=2x(x2+1)+3(x2+1)

=(x2+1)(2x+3)

b,a2-ab+a-b

=(a2-ab)+(a-b)

=a(a-b)+(a-b)

=(a-b)(a+1)

c,2x2+4x+2-2y2

=2(x2+2x+1-y2)

=2[(x2+2x+1)-y2 ]

=2[(x+1)2-y2 ]

=2(x+1-y)(x+1+y)

d,x4-2x3+10x2-20x

=(x4-2x3)+(10x2-20x)

=x3(x-2)+10x(x-2)

=(x-2)(x3+10x)

=(x-2)[x(x2+10)]

e,x3+2x2+x

=x(x2+2x+1)

=x(x+1)2

f,xy+y2-x-y

=(xy+y2)-(x-y)

=y(x+y)-(x+y)

=(x+y)(y-1)

16 tháng 10 2020

a, \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=\left(x^2-x+9\right)\left(x-3\right)\)

b, \(x^4-2x^3+2x-1=x^4-x^3-x^3+x^2-x^2+x-1=\left(x^3-x^2-x+1\right)\left(x-1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

...

2 tháng 7 2018

a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)

\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)

\(=\left(y^2+z\right)\left(x^2+y\right)\)

b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)

12 tháng 9 2020

Áp dụng HĐT a2 - b2 = ( a - b )( a + b )

và tính chất an.bn = ( a.b )n ( với n ∈ N* )

a) ( 3x + 1 )2 - ( x + 1 )2

= [ ( 3x + 1 ) - ( x + 1 ) ][ ( 3x + 1 ) + ( x + 1 ) ]

= ( 3x + 1 - x - 1 )( 3x + 1 + x + 1 )

= 2x( 4x + 2 )

= 2x.2( 2x + 1 )

= 4x( 2x + 1 )

b) ( x + y )2 - ( x - y )2

= [ ( x + y ) - ( x - y ) ][ ( x + y ) + ( x - y ) ]

= ( x + y - x + y )( x + y + x - y )

= 2y.2x = 4xy

c) ( 2xy + 1 )2 - ( 2x + y )2

= [ ( 2xy + 1 ) - ( 2x + y ) ][ ( 2xy + 1 ) + ( 2x + y ) ]

= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )

= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]

= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]

= ( y - 1 )( 2x - 1 )9 y + 1 )( 2x + 1 )

d) 9( x - y )2 - 4( x + y )2

= 32( x - y )2 - 22( x + y )2 

= [ 3( x - y ) ]2 - [ 2( x + y ) ]2

= ( 3x - 3y )2 - ( 2x + 2y )2

= [ ( 3x - 3y ) - ( 2x + 2y ) ][ ( 3x - 3y ) + ( 2x + 2y ) ]

= ( 3x - 3y - 2x - 2y )( 3x - 3y + 2x + 2y ) 

= ( x - 5y )( 5x - y )

e) ( 3x - 2y )2 - ( 2x - 3y )2

= [ ( 3x - 2y ) - ( 2x - 3y ) ][ ( 3x - 2y ) + ( 2x - 3y ) ]

= ( 3x - 2y - 2x + 3y )( 3x - 2y + 2x - 3y )

= ( x + y )( 5x - 5y )

= ( x + y )5( x - y )

f) ( 4x2 - 4x + 1 ) - ( x + 1 )2

= ( 2x - 1 )2 - ( x + 1 )2

= [ ( 2x - 1 ) - ( x + 1 ) ][ ( 2x - 1 ) + ( x + 1 ) ]

= ( 2x - 1 - x - 1 )( 2x - 1 + x + 1 )

= 3x( x - 2 )