Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
\(a)\) \(x^2-2x-4y^2-4y\)
\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)
\(=\)\(2\left(x-y\right)\left(x+2y\right)\)
Chúc bạn học tốt ~
a) Ta có x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= (x - 1)2 - (4y2 + 4y + 1)
= (x - 1)2 - (2y + 1)2
= (x - 1 - 2y - 1)(x - 1 + 2y + 1)
= (x - 2y - 1)(x + 2y)
Bài làm:
a) \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(\left(x-y\right)\left(x-y-z\right)\)
a/ \(x^2-2xy+y^2-zx+yz.\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c/ \(x^2-y^2-2x-2y.\)
\(=x^2-2x+1-y^2-2y-1\)
\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
a)
\(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
b)
\(=a\left(a-b\right)+a-b\)
\(=\left(a+1\right)\left(a-b\right)\)
c)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left(x+1-y\right)\left(x+1+y\right)\)
d)
\(=x^3\left(x-2\right)+10x\left(x-2\right)\)
\(=x\left(x^2+10\right)\left(x-2\right)\)
e)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
f)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a,2x3+3x2+2x+3
=(2x3+2x)+(3x2+3)
=2x(x2+1)+3(x2+1)
=(x2+1)(2x+3)
b,a2-ab+a-b
=(a2-ab)+(a-b)
=a(a-b)+(a-b)
=(a-b)(a+1)
c,2x2+4x+2-2y2
=2(x2+2x+1-y2)
=2[(x2+2x+1)-y2 ]
=2[(x+1)2-y2 ]
=2(x+1-y)(x+1+y)
d,x4-2x3+10x2-20x
=(x4-2x3)+(10x2-20x)
=x3(x-2)+10x(x-2)
=(x-2)(x3+10x)
=(x-2)[x(x2+10)]
e,x3+2x2+x
=x(x2+2x+1)
=x(x+1)2
f,xy+y2-x-y
=(xy+y2)-(x-y)
=y(x+y)-(x+y)
=(x+y)(y-1)
a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)
\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)
\(=\left(y^2+z\right)\left(x^2+y\right)\)
b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x^2-1\right)\left(x+2y\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)
Áp dụng HĐT a2 - b2 = ( a - b )( a + b )
và tính chất an.bn = ( a.b )n ( với n ∈ N* )
a) ( 3x + 1 )2 - ( x + 1 )2
= [ ( 3x + 1 ) - ( x + 1 ) ][ ( 3x + 1 ) + ( x + 1 ) ]
= ( 3x + 1 - x - 1 )( 3x + 1 + x + 1 )
= 2x( 4x + 2 )
= 2x.2( 2x + 1 )
= 4x( 2x + 1 )
b) ( x + y )2 - ( x - y )2
= [ ( x + y ) - ( x - y ) ][ ( x + y ) + ( x - y ) ]
= ( x + y - x + y )( x + y + x - y )
= 2y.2x = 4xy
c) ( 2xy + 1 )2 - ( 2x + y )2
= [ ( 2xy + 1 ) - ( 2x + y ) ][ ( 2xy + 1 ) + ( 2x + y ) ]
= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )
= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]
= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]
= ( y - 1 )( 2x - 1 )9 y + 1 )( 2x + 1 )
d) 9( x - y )2 - 4( x + y )2
= 32( x - y )2 - 22( x + y )2
= [ 3( x - y ) ]2 - [ 2( x + y ) ]2
= ( 3x - 3y )2 - ( 2x + 2y )2
= [ ( 3x - 3y ) - ( 2x + 2y ) ][ ( 3x - 3y ) + ( 2x + 2y ) ]
= ( 3x - 3y - 2x - 2y )( 3x - 3y + 2x + 2y )
= ( x - 5y )( 5x - y )
e) ( 3x - 2y )2 - ( 2x - 3y )2
= [ ( 3x - 2y ) - ( 2x - 3y ) ][ ( 3x - 2y ) + ( 2x - 3y ) ]
= ( 3x - 2y - 2x + 3y )( 3x - 2y + 2x - 3y )
= ( x + y )( 5x - 5y )
= ( x + y )5( x - y )
f) ( 4x2 - 4x + 1 ) - ( x + 1 )2
= ( 2x - 1 )2 - ( x + 1 )2
= [ ( 2x - 1 ) - ( x + 1 ) ][ ( 2x - 1 ) + ( x + 1 ) ]
= ( 2x - 1 - x - 1 )( 2x - 1 + x + 1 )
= 3x( x - 2 )
a, x3 - x2 - x + 1
= x\(^2\) ( x - 1 ) - (x - 1 )
= ( x\(^2\) - 1 ) (x - 1 )
b, x2y2 + 1 - x2 - y2
= ( \(x^2y^2\) - \(x^2\) ) - ( \(y^2\) - 1 )
= \(x^2\) ( \(y^2-1\)) - ( \(y^2-1\) )
= ( \(x^2-1)\left(y^2-1\right)\)
c, x4 - x2 + 2x - 1
= \(x^4\) - (\(x^2\) - 2x + 1 )
= (x\(^2\))\(^2\) - (x - 1 )\(^2\)
= ( x\(^2\) - x + 1 ) (x\(^2\) + x -1 )
e, x2 - y2 - 2x - 2y
= (x - y ) ( x + y ) - 2 ( x + y )
= ( x - y - 2 ) ( x+ y )
f, x2 - y2 + 2y - 1
= x\(^2\) - ( y\(^2\) - 2y + 1 )
= x\(^2\) - ( y - 1 )\(^2\)
= (x - y +1 ) ( x+y - 1)