\(\frac{1}{101}+\frac{1}{102}+......+\frac{1}{200}\)CMR : B >\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

\(B=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>50.\frac{1}{150}+50.\frac{1}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

17 tháng 6 2020

Số số hạng của A là:

(200-101):1+1=100(số)

Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :

100:50=2(nhóm)

Ta có :

A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)

Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50

1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50

Từ 3 điều trên suy ra:

A<1/150x50+1/200x50

A<1/3+1/4

A<7/12

vậy A<7/12

❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy

31 tháng 8 2016

Đặt \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+..........+\frac{1}{200}\)

Vậy \(A>\frac{1}{200}+\frac{1}{200}+.......+\frac{1}{200}\)

\(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+......+\frac{1}{200}\\ =\frac{100}{200}\\ =\frac{1}{2}\)

Vì \(\frac{1}{2}< \frac{5}{8}\Rightarrow A>\frac{5}{8}\)

31 tháng 8 2016

Đặt \(A=\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{200}\)

\(A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\)

\(\frac{1}{100}+\frac{1}{100}+.........+\frac{1}{100}\\ =\frac{100}{100}\\ =1\)

Vì \(1>\frac{5}{8}\)\(\Rightarrow A>\frac{5}{8}\)

mình làm 2 cách bạn có nhận xét gì thì bình luận , hoặc hửi tin nhắn qua cho mình nhé

30 tháng 4 2016

đặt B=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}>\frac{50}{150}=\frac{1}{3}\)

đặt C=\(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}>\frac{50}{200}=\frac{1}{4}\)

A=B+C>\(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

16 tháng 8 2018

\(\frac{A}{B}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}+\frac{1}{103}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{103}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{102}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{103}\right)-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{51}\)

\(=\frac{1}{52}+\frac{1}{53}+....+\frac{1}{103}=\left(\frac{1}{52}+\frac{1}{103}\right)+\left(\frac{1}{53}+\frac{1}{102}\right)+...+\left(\frac{1}{77}+\frac{1}{78}\right)\)

\(=\frac{155}{52.103}+\frac{155}{53.102}+....+\frac{155}{77.78}\)

Các cặp số hạng của mẫu từng phân số là các cặp nguyên tố cùng nhau nên \(A⋮155\)

15 tháng 3 2017

tại sao cậu toàn cho bài khó thế tớ chịu