K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Theo đề bài ta có:

\(B=\dfrac{-1^2.-2^2.....-100^2}{1.2.2.3.....99.100}\)

\(B=\dfrac{1^2.2^2.....100^2}{1.2.2.3.....99.100}\)

\(B=\dfrac{1.1.2.2......100.100}{1.2.2.3.....99.100}\)

\(B=\dfrac{1.2.3......100}{1.2.3.......99}.\dfrac{1.2.3......100}{2.3.4......100}\)

\(B=100\)

9 tháng 10 2017

\(N=\frac{-1^2}{1.2}.\frac{-2^2}{2.3}.\frac{-3^2}{3.4}....\frac{-100^2}{100.101}.\frac{-101^2}{101.102}\)
    \(=\frac{1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}....\frac{100.100}{100.101}.\frac{101.101}{101.102}\)
    \(=\frac{1.2.2.3.3....100.100.101.101}{1.2.2.3.3.4....100.101.101.102}\)
     \(=\frac{1}{102}\)

6 tháng 11 2017

kho qua chi a

AH
Akai Haruma
Giáo viên
15 tháng 11 2017

Lời giải:

Ta có:

\(\text{VT}=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=\frac{1.2.3....31}{2.4.6.8...64}\)

Xét mẫu số:

\(2.4.6.8.....62.64=(2.1)(2.2)(2.3)(2.4)....(2.31)(2.32)\)

\(=2^{32}(1.2.3....31.32)\)

Suy ra:

\(\text{VT}=\frac{1.2.3....31}{2^{32}.(1.2.3...31.32)}=\frac{1}{2^{32}.32}=\frac{1}{2^{37}}\)

Do đó \(4^x=\frac{1}{2^{37}}\Leftrightarrow 2^{2x}=\frac{1}{2^{37}}\Leftrightarrow 2^{2x+37}=1\)

\(\Leftrightarrow 2x+37=0\Leftrightarrow x=-\frac{37}{2}\)

Vậy \(x=\frac{-37}{2}\)

18 tháng 11 2017

Số 2 nó ở đâu chui ra v Violympic toán 7

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

11 tháng 8 2018

Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)

\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)

\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)

\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)

\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)

11 tháng 8 2018

good luckbanhqua

2 tháng 7 2018

1,

\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)