Bài 209. Rút gọn các biểu thức sau:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)

29 tháng 6 2016

Mình đang cần gấp

15 tháng 9 2019

\(A=2^3-3.2^2.x+3.2.x^2-x^3\)

\(A=\left(2-x\right)^3\)

\(B=\left(2x\right)^3-2.\left(2x\right)^2.y+3.2x.y^2-y^3\)

\(B=\left(2x-y\right)^3\)

25 tháng 10 2018

Bài1: Phân tích các đa thức sau thành nhân tử

a)36-4x2+4xy-y2

\(=6^2-\left(4x^2-4xy+y^2\right)\)

\(=6^2-\left(2x-y\right)^2\)

\(=\left(6+2x-y\right)\left(6-2x+y\right)\)

b)2x4+3x2-5

\(=2x^4-2x^2+5x^2-5\)

\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)

25 tháng 10 2018

B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)

\(=\left(6-2x+y\right)\left(6+2x-y\right)\)

c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)

d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)

e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)

19 tháng 9 2020

a) B = x2 + 4y2 - 5x + 10y - 4xy + 17 

= ( x2 - 4xy + 4y2 ) - ( 5x - 10y ) + 17

= ( x - 2y )2 - 5( x - 2y ) + 17

= 52 - 5.5 + 17

= 17

b) C = 2( a3 + b3 ) - 3( a2 + b2 )

= 2( a + b )( a2 - ab + b2 ) - 3( a2 + b2 )

= 2( a2 - ab + b2 ) - 3a2 - 3b2 ( gt a + b = 1 )

= 2a2 - 2ab + 2b2 - 3a2 - 3b2

= -a2 - 2ab - b2

= -( a2 + 2ab + b2 )

= -( a + b )2

= -1

c) a + b + c + d = 0

<=> a + b = -( c + d )

<=> ( a + b )3 = -( c + d )3

<=> a3 + 3a2b + 3ab2 + b3 = -( c3 + 3c2d + 3cd2 + d3 )

<=> a3 + 3a2b + 3ab2 + b3 = -c3 - 3c2d - 3cd2 - d3

<=> a3 + b3 + c3 + d3 = -3c2d - 3cd2 - 3a2b - 3ab2

<=> a3 + b3 + c3 + d3 = -3cd( c + d ) - 3ab( a + b )

<=> a3 + b3 + c3 + d3 = 3ab( c + d ) - 3cd( c + d ) < Do ( a + b ) = -( c + d ) >

<=> a3 + b3 + c3 + d3 = 3( ab - cd )( c + d )

<=> a3 + b3 + c3 + d3 - 3( ab - cd )( c + d ) = 0

19 tháng 9 2020

Cảm ơn bạn TRẦN NHẬT QUỲNH nha'

30 tháng 9 2018

Câu 4 : 

       Ta có : a+b+c=0

​​=> a+b=-c

Lại có : a3+b3=(a+b)3-3ab(a+b)

=> a3+b3+c3=(a+b)3-3ab(a+b)+c3

                    =-c3-3ab. (-c)+c3

                    =3abc

Vậy a3+b3+c3=3abc với a+b+c=0

21 tháng 7 2018

a) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=\dfrac{1}{2}\left(3^{64}-1\right)\)

\(=\dfrac{3^{64}-1}{2}\)

b) \(\left(a+b+c\right)2+\left(a-b-c\right)2+\left(b-c-a\right)2+\left(c-a-b\right)2\)

\(=2\left[\left(a+b+c\right)+\left(a-b-c\right)+\left(b-c-a\right)+\left(c-a-b\right)\right]\)

\(=2\left(a+b+c+a-b-c+b-c-a+c-a-b\right)\)

\(=2.0\)

\(=0\)

c)\(\left(a+b+c+d\right)2+\left(a+b-c-d\right)2+\left(a+c-b-d\right)2+\left(a+d-b-c\right)2\)

\(=2\left(a+b+c+d+a+b-c-d+a+c-b-d+a+d-b-c\right)\)

\(=2.4a\)

\(=8a\)