K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(sin^2x+sin^2\left(90^0-x\right)=sin^2x+cos^2x=1\)

Do đó:

\(sin^210+sin^220+...+sin^270+sin^280\)

\(=\left(sin^210+sin^280\right)+\left(sin^220+sin^270\right)+...+\left(sin^240+sin^250\right)\)

\(=1+1+1+1=4\)

NV
15 tháng 8 2020

a/

\(0\le sin^2x\le1\Rightarrow-2\le f\left(x\right)\le1\)

\(f\left(x\right)_{min}=-2\) khi \(sin^2x=1\)

\(f\left(x\right)_{max}=1\) khi \(sin^2x=1\)

b/

\(g\left(x\right)=1-cos^2x+3cosx-2=-cos^2x+3cosx-1\)

\(=-cos^2x+3cosx-2+1=\left(cosx-1\right)\left(2-cosx\right)+1\)

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}cosx-1\le0\\2-cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(cosx-1\right)\left(2-cosx\right)\le0\Rightarrow g\left(x\right)\le1\)

\(g\left(x\right)_{max}=1\) khi \(cosx=1\)

\(g\left(x\right)=-cos^2x+3cosx+4-5=\left(cosx+1\right)\left(4-cosx\right)-5\)

\(\left(cosx+1\right)\left(4-cosx\right)\ge0\Rightarrow g\left(x\right)\ge-5\)

\(g\left(x\right)_{min}=-5\) khi \(cosx=-1\)

17 tháng 8 2021

Dùng công thức trực quan đi.

17 tháng 8 2021

Có thể giúp em được không ạ, em không hiểu ạ. Em xin lỗi và cảm ơn ạ. 

NV
2 tháng 9 2020

ĐKXĐ: ...

\(\Leftrightarrow tan^2x+cot^2x=2\left(cos^4x+sin^4x+2sin^2x.cos^2x\right)\)

\(\Leftrightarrow tan^2x+cot^2x=2\left(sin^2x+cos^2x\right)^2\)

\(\Leftrightarrow tan^2x+cot^2x=2\)

\(\Leftrightarrow\left(tanx-cotx\right)^2=0\)

\(\Leftrightarrow tanx=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow x=\frac{\pi}{2}-x+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

NV
29 tháng 8 2020

Ta có: \(sin^2x\le1\Rightarrow y\ge2sinx+\sqrt{3-1}=2sinx+\sqrt{2}\)

Mặt khác \(sinx\ge-1\Rightarrow y\ge-2+\sqrt{2}\)

\(\Rightarrow y_{min}=-2+\sqrt{2}\) khi \(sinx=-1\)

\(y^2=3sin^2x+3+4sinx\sqrt{3-sin^2x}\)

\(y^2=3sin^2x+3+2\sqrt{2}\left(\sqrt{2}sinx.\sqrt{3-sin^2x}\right)\)

\(y^2\le3sin^2x+3+\sqrt{2}\left(2sin^2x+3-sin^2x\right)=\left(3+\sqrt{2}\right)sin^2x+3+3\sqrt{2}\)

Do \(sin^2x\le1\Rightarrow y^2\le3+\sqrt{2}+3+3\sqrt{2}=6+4\sqrt{2}\)

\(\Rightarrow y\le\sqrt{6+4\sqrt{2}}=2+\sqrt{2}\)

\(y_{max}=2+\sqrt{2}\) khi \(sinx=1\)

29 tháng 7 2020

\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)

\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)

Với \(sinx-cosx=0\)

\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)

Với \(\frac{3}{2}sin2x+2+cos2x=0\)

\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)

29 tháng 7 2020

\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)

Nhận thấy sinx=0 không là nghiệm pt.

Chia cả 2 vế cho sin4x ta được

\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)

d) kiểm tra đề.

NV
5 tháng 9 2020

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

NV
5 tháng 9 2020

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

NV
25 tháng 6 2019

Câu 1:

\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)

\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)

Câu 2:

\(\Leftrightarrow1-cos6x=1+cos2x\)

\(\Leftrightarrow-cos6x=cos2x\)

\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
25 tháng 6 2019

Câu 3:

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)

\(\Leftrightarrow cos2x+cos2x=1\)

\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Câu 4:

\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)

\(\Leftrightarrow-cosx+sinx=1+sinx\)

\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)

Câu 5:

Giống câu 3, chắc bạn ghi nhầm đề