K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=A^{2k}+A^{2k-1}B+...+A^2B^{2k-1}+AB^{2k-1}-A^{2k-1}\cdot B-A^{2k-2}\cdot B^2-...-B^{2k}\)

\(=A^{2k}-B^{2k}\)

3 tháng 9 2018

câu này là hằng đẳng thức thôi . nhưng nếu muốn làm chi tiết thì đây nha :))

ta có : \(\left(A+B\right)\left(A^{2K}-A^{2k-1}B+...+A^2.B^{2k-2}-AB^{2k-1}+B^{2k}\right)\)

\(=\left(A+B\right)\left(A^{2K}+B^{2k}-A^{2k-1}B+...+A^2.B^{2k-2}-AB^{2k-1}\right)\)

\(=A\left(A^{2k}+B^{2k}\right)+B\left(A^{2k}+B^{2k}\right)+A\left(-A^{2k-1}B+...+A^2B^{2k-2}-AB^{2k-1}\right)+B\left(A^{2k-1}B+...+A^2B^{2k-2}-AB^{2k-1}\right)\)

\(=A\left(A^{2k}+B^{2k}\right)+B\left(A^{2k}+B^{2k}\right)-A^{2k}B-B^{2k}A\)

\(=A^{2k+1}+AB^{2K}+BA^{2k}+B^{2k+1}-A^{2k}B-B^{2k}A\)

\(=A^{2k+1}+B^{2k+1}\)

3 tháng 9 2018

Cảm ơn bân nhiều =))

Cái này là hằng đẳng thức luôn á bạn

\(\left(A-B\right)\left(A^{n-1}+A^{n-2}\cdot B+...+A\cdot B^{n-2}+B^{n-1}\right)\)

\(=A^n-B^n\)

18 tháng 1 2017

Bài 2 thay 2 vào x rồi giải bình thường tìm k 

15 tháng 11 2016

phân tích nhân tử đi -_-, làm ra dài nên lười viết, chỉ cho cách làm đáy

16 tháng 11 2016

ra đc ko?

18 tháng 7 2017

a) \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)

\(=\left(x^3-2x^2-2x^2+4x+2x-4\right)\left(x^3+2^3\right)\)

\(=\left(x^3-4x^2+6x-4\right)\left(x^3+8\right)\)

\(=x^6+8x^3-4x^5-32x^2+6x^4+48x-4x^3-32\)

\(=x^6-4x^5+4x^3-32x^2+48x-32\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]+x^3-3x\left(x^2-1\right)\)

\(=2x\left[\left(x^2+2x+1\right)-\left(x^2-1\right)+\left(x^2-2x+1\right)\right]+x^3-\left(3x^3-3x\right)\)

\(=2x\left(x^2+2x+1-x^2+1+x^2-2x+1\right)+x^3-3x^3+3x\)

\(=2x\left(x^2+3\right)+x^3-3x^3+3x\)

\(=2x^3+6x-2x^3+3x\)

\(=9x\)

2 câu kia đợi tí đã nhé!

18 tháng 7 2017

c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)

\(=\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(a^2+b^2+c^2+2ab-2bc-2ca\right)+\left(4a^2-4ab+b^2\right)\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)

\(=6a^2+3b^2+2c^2\)

d) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+2a^2+2ab+b^2\)

\(=4a^2+4b^2+2c^2+6ab.\)