Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+...+\frac{1}{97\cdot3}+\frac{1}{99\cdot1}}=\frac{\left[1+\frac{1}{99}\right]+\left[\frac{1}{3}+\frac{1}{97}\right]+...+\left[\frac{1}{49}+\frac{1}{51}\right]}{2\left[\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+...+\frac{1}{49\cdot51}\right]}\)
\(=\frac{\frac{100}{1\cdot99}+\frac{100}{3\cdot97}+...+\frac{100}{49.51}}{2\left[\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+...+\frac{1}{49.51}\right]}=\frac{100\left[\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+...+\frac{1}{49.51}\right]}{2\left[\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+...+\frac{1}{49.51}\right]}=\frac{100}{2}=50\)
Tử số = 1 + 1/3 + 1/5 + ... + 1/97 + 1/99
= (1 + 1/99) + (1/3 + 1/97) + ... + (1/49 + 1/51)
= 100/1.99 + 100/3.97 + ... + 100/49.51
= 100.(1/1.99 + 1/3.97 + ... + 1/49.51)
Mẫu số = 1/1.99 + 1/3.97 + 1/5.95 + ... + 1/97.3 + 1/99.1
= 2.(1/1.99 + 1/3.97 + 1/5.95 + ... + 1/49.51)
=> phân số đề bài cho = 100/2 = 50
Ta có :
\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
\(=\frac{\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}{2.\left(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{49.51}\right)}\)
\(=\frac{\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}}{2.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)
\(=\frac{100.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}\)
\(=\frac{100}{2}=50\)
Ủng hộ mk nha !!! ^_^
Tính ở tử số:
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}=50.2.\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)
\(=50.\left(\frac{1}{1.99}+\frac{1}{3.97}+.....+\frac{1}{49.51}+\frac{1}{51.49}+...+\frac{1}{99.1}\right)\)
Gọi tử số là C: mẫu số là B => \(A=\frac{C}{A}=50\)
Q=\(\frac{3+1+\frac{3}{5}+...+\frac{3}{99}}{\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)}\)
Q=\(\frac{\frac{3}{1}+\frac{3}{3}+\frac{3}{5}+...+\frac{3}{99}}{\frac{2}{1.99}+\frac{2}{3.97}+...+\frac{2}{49.51}}\)
Q=\(50.\frac{3\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)}{50\left(\frac{2}{1.99}+\frac{2}{3.97}+...+\frac{2}{49.51}\right)}\)
Q=\(50.3.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}}\)
Q=\(150.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{99+1}{1.99}+\frac{97+3}{3.97}+...+\frac{51+49}{49.51}}\)
Q=150\(.\frac{\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}\)
Q=\(150.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}\)
Q=150.1
Q=150
\(Q=\frac{4+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(Q=\frac{100\left(\frac{3}{1}+\frac{3}{3}+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}\right)}{100\left(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}\right)}\)
=> \(Q=\frac{100.3\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{\frac{1+99}{1.99}+\frac{3+97}{3.97}+\frac{5+95}{5.95}+...+\frac{95+5}{95.5}+\frac{97+3}{97.3}+\frac{99+1}{99.1}}\)
=> \(Q=\frac{300\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{95}+\frac{1}{5}\right)+\left(\frac{1}{97}+\frac{1}{3}\right)+\left(\frac{1}{99}+\frac{1}{1}\right)}\)
=> \(Q=\frac{300\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{2\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}\)
=> \(Q=\frac{300}{2}=150\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)
Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1
= [(2015 - 1) : 2 + 1].(2015 + 1) : 2
= 1008.2016 : 2 = 1016064
Lại có : 2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng
= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)
= 2 + 2 + ... + 2 + 2 (504 số hạng 2)
= 2 x 504 = 1008
Khi đó A = \(\frac{1016064}{1008}=1008\)
b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)
Khi đó : B/100 = 1/2
=> B = 50
Vậy B = 50
a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)
\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)
Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)
\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)
\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)
\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)
Thay B và C vào A
\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)
b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)
\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Thay E vào B
\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
nhân 100 với cả tử với mẫu sau đó phân tích mẫu ta có
100/1.99 +100/3.97+ ...+100/99.1 = (1+99)/1.99 +(3+97)/3.97 +...+ (1+99)/1.99
= 1/1.99+99/1.99+3/3.97+97/3.97+...+1/1.99+99/1.99
= 1/99 + 1/1 +1/3 +1/97+....+1/97+1/3+1/99+1/1
= 2.(1+1/3+1/5+1/7+.....1/97+1/99)
Do đó A =[100(1+1/3+1/5+..+1/99)] / 2(1+1/3+1/5+...1/99) = 50
nhân 100 với cả tử với mẫu sau đó phân tích mẫu ta có
100/1.99 +100/3.97+ ...+100/99.1 = (1+99)/1.99 +(3+97)/3.97 +...+ (1+99)/1.99
= 1/1.99+99/1.99+3/3.97+97/3.97+...+1/1.99+99/1.99
= 1/99 + 1/1 +1/3 +1/97+....+1/97+1/3+1/99+1/1
= 2.(1+1/3+1/5+1/7+.....1/97+1/99)
Do đó A =[100(1+1/3+1/5+..+1/99)] / 2(1+1/3+1/5+...1/99) = 50