Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài cạnh KB: \(\left(30-10\right):2=10\left(cm\right)\)
Xét tam giác CKB vuông tại có:
\(BC^2=CK^2+KB^2\left(pytago\right)\)
\(\Rightarrow CK=\sqrt{BC^2-KB^2}=\sqrt{12,5^2-10^2}=7,5\left(cm\right)\)
C D B A H N M
a) Kẻ CH vuông góc với AB ( H thuộc AB )
Ta có : \(BH=\frac{AB-CD}{2}=\frac{30-10}{2}=10\left(cm\right)\)
Ta lại có :
\(\cos\widehat{B}=\frac{BH}{BC}\)
\(\Rightarrow BC=\frac{10}{\cos60^o}\)
Vì cos 60o = \(\frac{1}{2}\)
\(\Rightarrow BC=10.2=20\left(cm\right)\)
b) Vì ABCD là hình thang cân
M , N lần lượt là trung điểm của AB , Cd
=>MN vuông góc với CD và AB
=> MN = CH
Theo định lí py-ta-go ta có : \(CH=\sqrt{BC^2-BH^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
=> MN = \(10\sqrt{3}\)
Không mất tính tổng quát, giả sử AB < CD
Gọi K là giao điểm của AD và BC
Dễ có: \(\Delta KEF~\Delta KAB\left(g.g\right)\Rightarrow\frac{S_{KAB}}{S_{KEF}}=\frac{AB^2}{EF^2}\)(tỉ số diện tích bằng bình phương tỉ số đồng dạng)
\(\Delta KEF~\Delta KDC\left(g.g\right)\Rightarrow\frac{S_{KDC}}{S_{KEF}}=\frac{CD^2}{EF^2}\)(tỉ số diện tích bằng bình phương tỉ số đồng dạng)
Từ đó suy ra \(\frac{AB^2+CD^2}{EF^2}=\frac{S_{KAB}+S_{KCD}}{S_{KEF}}=\frac{\left(S_{KAB}+S_{ABFE}\right)+\left(S_{KCD}-S_{EFCD}\right)}{S_{KEF}}=2\)\(\Rightarrow EF^2=\frac{AB^2+CD^2}{2}\)hay \(EF=\sqrt{\frac{AB^2+CD^2}{2}}\)(đpcm)
AB; BC là 2 đáy à?
kì vậy?
Nguyễn Nhật Minh mk cũng ko hiểu nổi cái đề mới đăng lên nk, đề trên vio đó