Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn học hình thang rồi chứ
A B C M N E D I K
a,Xét tam giác ABC có: E là tđ của AB
D là tđ của AC
=> ED là đường TB của tam giác ABC
=> \(ED=\frac{1}{2}BC\left(1\right)\),ED//BC
Xét hình thang EDCB(ED//BC) có M là tđ của BE, N là tđ của CD
=> MN là đường TB của hình thang EDCB
=> MN//BC. Mà I,K nằm trên MN
=> MK//BC, NI//BC
Xét tam giác ECB có: M là tđ của EB, MK//BC
=> K là tđ của CE
C/m tương tự ta có
I là tđ của BD
Xét tam giác ECB có M là tđ của BE, K là tđ của CE
=> MK là đường TB của tam giác EBC
=>\(MK=\frac{1}{2}BC\left(2\right)\)
C/m Tương tự ta có
\(IN=\frac{1}{2}BC\left(3\right)\)
Từ (1),(2),(3)=> đpcm
b, theo a ta có :M là tđ của BE
N là tđ của CD
Dễ dàng c/m đc MI là đg TB của tam giác BED(M là tđ, I là tđ)
=> MI// và =\(\frac{1}{2}ED\left(1\right)\)
C/m T2 ta có:
\(KN=\frac{1}{2}ED\left(2\right)\)
(Ta áp dụng t/c:Trong HT có 2 cạnh bên ko //, đoạn thẳng nối tđ 2 đg chéo thì // với đáy và = \(\frac{1}{2}\) hiệu 2 đáy)
Ta có: I là tđ của BD,K là tđ của CE
=>\(IK=\frac{BC-ED}{2}=\frac{2ED-ED}{2}=\frac{1}{2}ED\left(3\right)\)
Từ (1),(2),(3)=> đpcm
các bn thấy đúng tk cho mk nha
nốt bài 58,59
58b,(2x^3-5x^2+6x-15):(2x-5)
c,(x^4-x-14):(x-2)
59;Tìm GTLN (hoặc GTNN )của các biểu thức sau:a,A=x^2-6x+11 b,B=2x^2+10x-1 c;C=5x-x^2
1: \(\Leftrightarrow x-2-7x+7=-1\)
=>-6x+5=-1
hay x=1(loại)
3: \(\Leftrightarrow\left(x+2\right)\left(x-1\right)-\left(x+1\right)\left(x+3\right)=4\)
\(\Leftrightarrow x^2+x-2-x^2-4x-3=4\)
=>-3x=9
hay x=-3(loại)
4: \(\Leftrightarrow x^2+2x+1-x^2+2x-1=3x\cdot\dfrac{x+1-x+1}{x+1}\)
\(\Leftrightarrow4x=\dfrac{6x}{x+1}\)
\(\Leftrightarrow4x^2+4x-6x=0\)
\(\Leftrightarrow4x^2-2x=0\)
=>2x(2x-1)=0
hay \(x\in\left\{0;\dfrac{1}{2}\right\}\)
-Đặt \(x^2+y^2=a;z^2-x^2=b;-y^2-z^2=c\Rightarrow a+b+c=0\)
-Ta c/m: \(a^3+b^3+c^3=3abc\) thì sẽ ra như đề bài.
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\) (luôn đúng)