Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C D 1 3 2 4
a, Xét \(\Delta ABC\)vuông tại A có :
\(BC^2=AB^2+ AC^2\)
\(BC^2=8^2+6^2\)
\(BC^2=64+36\)
\(BC^2=100\)
\(BC=10\)(cm)
b, Xét \(\Delta ABE\)và \(\Delta BDE\)có :
\(AB=AD\)(gt)
\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt)
AE là cạnh chung
=> \(\Delta ABE=\Delta BDE\)(c.g.c)
=> BE = DE
=> \(\widehat{E_1}=\widehat{E_2}\)
Ta có :
\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù)
\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù)
mà \(\widehat{E_1}=\widehat{E_2}\)(cmt)
=> \(\widehat{E_3}=\widehat{E_4}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên)
EC là cạnh chung
BE = DE (chứng minh trên)
=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c )
Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.
A ) áp dụng định lý py ta có :
\(AB^2 + AC^2 = 8^2 + 6^2 = 100 = 10^2 = BC^2\)
\(\Rightarrow\)\(AB^2 + AC^2 = BC^2\)
\(\Rightarrow\)tam giác \(ABC\) vuông tại \(A\)
B) xét tam giác \(BAH\) vuông tại \(H\) có : góc \(BAH\) + góc \(ABH = 90\)¤
Xét tam giác \(ABC \) vuông tại \(A\) có : góc \(ABH + \) góc \(ACB = 90^o\)
\(\Rightarrow\)góc\(BAH = \) góc \(ACB \)
C ) xét tam giác \(BAC = \) tm giác \(DAC ( c - g - c )\)
\(\Rightarrow\)\(BC = CD\)
Góc \(BCE = \) góc \(DCE\)
Xét tam giác \(BEC \) và tam giác \(DEC \)có :
\(BC = CD\)
góc \(BCE\) = góc \(DCE\)
CẬU TỰ VẼ HINH NHÉ!
a) ap dụng định lý py ta go ta có:
AB^2+AC^2 =8^2+6^2 =100 =10^2=BC^2
Suy ra AB^2+AC^2=BC^2
Suy ra∆ABC vuông tai A
b) Xet ∆BAH vuông tại H có: góc BAH+ góc ABH= 90°
Xét∆ABC vuông tại A có: góc ABH + gócACB =90°
Suy ra: goc BAH=góc ACB
c)xet ∆BAC=∆DAC (c-g-c)
Suy ra: BC=CD
Góc BCE = góc DCE
Xét∆BEC và∆DEC có:
BC= CD
Góc BCE = góc DCE
Chung cạnh EC
Suy ra∆BEC=∆DEC( c-g-c )
D) gọi trung điểm của BC rồi tu CM nó vs D và E thẳng hàng nhé. Muộn rồi, mk phai đi ngủ!
b)ta có AB=AD(giả thiết)
=> CA là đường trung tuyến của BD
CA vuông góc với BD (t/g ABC vuông tại A)
=>CA là đường cao của BD
mà CA là đường trung tuyến của BD(chứng minh trên)
=>t/g BCD cân tại C
=>CA cũng là p/g của t/g ABC
=>góc BCA= góc DCA
Xét t/g BEC và t/g DEC
góc BCA= góc DCA
BC=CD(t/g BCD cân tại C)
EC: cạnh chung
Suy ra t/g BEC= t/g DEC(c-g-c)
c) trên trung tuyến CA có CE/AC=6-2/6=2/3
=>ba đường trung tuyến của t/g BCD đồng quy tại E
=>DE là đường trung tuyến của BC
=>DE đi qua trung điểm BC
A B C D E
a) Áp dụng định lí Py-ta-go cho \(\Delta ABC\)vuông tại A ta được :
\(\Leftrightarrow AB^2+AC^2=BC^2\)
\(\Leftrightarrow8^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=100\)
\(\Leftrightarrow BC=10\left(cm\right)\)
Vậy \(BC=10cm\)
b) Xét \(\Delta CDA\)và \(\Delta CBA\)có :
\(\widehat{DAC}=\widehat{BAC}\left(=90^o\right)\)
\(AD=AB\)
Chung AC
\(\Rightarrow\Delta CDA=\Delta CBA\left(c-g-c\right)\)
\(\Rightarrow\hept{\begin{cases}\widehat{DCE}=\widehat{BCE}\\CD=BC\end{cases}}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(CD=BC\)
\(\widehat{DCE}=\widehat{BCE}\)
Chung CE
\(\Rightarrow\Delta BEC=\Delta DEC\left(c-g-c\right)\left(đpcm\right)\)
c) Ta có : \(AE=2cm\)
\(AC=6cm\)
\(\Rightarrow AE=\frac{1}{3}AC\) \(\Rightarrow CE=\frac{2}{3}AC\)
\(\Rightarrow\)CA là trung tuyến \(\Delta BCD\)
\(\Rightarrow\)E là trọng tâm của \(\Delta BCD\)
\(\Rightarrow\)DE đi qua trung điểm của BC ( đpcm )
Vậy ...
Cho mik hỏi là còn cách chứng minh phần c nào khác ko ?
a)
Theo định lí ptago trong tam giác vuông ABC có :
BC2 = AB2 +AC2
BC2 = 82 + 62
BC = căn bậc 2 của 100 = 10 (cm)
b)
xét tam giác ABC và tam giác ACD có :
góc CAB = góc CAD = 90 độ (gt )
AC cạnh chung
AB = AD ( gt )
suy ra : tam giác ABC = tam giác ACD ( c-g-c )
suy ra : góc ACB = góc ACD ( 2 góc tương ứng )
BC = DC (gt)
Xét tam giác BEC và tam giác DEC có :
EC cạnh chung
BC = DC ( c/m trên )
góc ACB = góc ACD ( c/ m trên )
suy ra tam giác BEC = tam giác DEC ( c-g-c )
mình chưa nghĩ ra câu c nếu câu a , b đung thì h cho mình nha