Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).
a)Xét \Delta AHC và \Delta DHC có:
- AH=DH(GT)
-\{AHC}=\{DHC}(góc kề bù)
-HC chung(cách vẽ)
Mà \{AHC}=90 độ;\{AHD} = 180 độ(góc bẹt)
=> \Delta AHC = \Delta DHC
=>\{DHC}=90 độ
=>HC là tia phân giác của \{ACD}
-Với \{ABD} tương tự.
b)Vì \Delta AHC = \Delta DHC (c.c.c)
- AH=DH(GT)
- HC chung(cách vẽ)
- CA=CD(cạnh tương ứng)
Vậy CA=CD(ĐPCM).
Vì \Delta AHB = \Delta DHB (c.c.c)
- AH=DH(GT)
- HB chung(cách vẽ)
- BD=BA(cạnh tương ứng)
Vậy BA=BA(ĐPCM).
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a)Xet 2 tam giac vuong AHB va DHC co:
HC chung
DH = AH
=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)
Ta co : CA=CD (2 canh tuong ung)
=>\(\Delta\)CAD can
b)
B A C H D
a) Ta thấy BC vuông góc với AD tại trung điểm H nên BC là đường trung trực của AD.
Do C thuộc BC nên CA = CD
b) Do B thuộc BC nên BA = BD
Vậy tam giác ABD cân tại B, có BH là đường cao nên đồng thời là phân giác.
Vậy nên BC là phân giác góc ABD.
c) Ta thấy ABD và ACD là các tam giác cân nên \(\widehat{BAD}=\widehat{BDA};\widehat{CAD}=\widehat{CDA}\)
Để AB // CD thì \(\widehat{BAD}=\widehat{ADC}\) hay \(\widehat{BAD}=\widehat{CAD}\)
Nói cách khác tam giác ABC có đường cao AH đồng thời là phân giác nên nó là tam giác cân tại A.
Tóm lại tam giác ABC cân tại A thì AB // CD.
a)vì CB\(\perp AD\)tại trung điểm H của đoạn thẳng AD
=>CB là đường trung trực của AD . Mà C\(\in BC\)
=>CA=CD( tính chất một điểm thuộc đường trung trực)
b)trong \(\Delta ACD\)có AC=DC
=>\(\Delta ADC\)cân tại C .
vì \(\Delta ADC\)cân tại C có đường trung trực CH =>CH vừa là đường trung trực vừa là tia phân giác của \(\Delta ADC\)
mà B;C;H thẳng hàng=>BC cũng là tia phân giác của \(\widehat{ACD}\)