K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

What do you want to ask?

22 tháng 8 2016

Ai giúp mình với ạh

22 tháng 8 2016

a) \(\left(x-3\right)\)\(\left(x^2+3x+9\right)\)+\(x\left(x+2\right)\left(x-2\right)\) =1

\(\Leftrightarrow x^3\)\(-27\)+\(x\left(x^2-4\right)\) =1

\(\Leftrightarrow\)\(x^3\)\(-27\)\(+x^3\)\(-4x\) =1

\(\Leftrightarrow\)\(2x^3\)\(-4x-27\) = 1

Suy ra \(x\) =2,685673906

 

11 tháng 8 2016

Bài 1:

a. A = x^2 - 5x - 1

\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)

\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)

Dấu = khi x=5/2

Vậy MinC=-29/4 khi x=5/2

 

 

11 tháng 8 2016

2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )

=>4x2-12x+9+1-16x2=-14x2+13x-3

=>-12x2-12x+10=-14x2+13x-3

=>2x2-25x+13=0

\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)

\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)

\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)

\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)

c. 4.( x - 3 ) - ( x + 2 ) = 0

=>4x-12-x-2=0

=>3x-14=0

=>3x=14

=>x=14/3

 

 

18 tháng 11 2016

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\frac{1+y^2+1+x^2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\\ \frac{2+x^2+y^2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)

=>\(\left(2+x^2+y^2\right)\left(1+xy\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\left(2+x^2+y^2\right)+\left(2+x^2+y^2\right)xy\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(2+x^2+y^2+2xy+x^3y+y^3x\ge\left(2+2x^2\right)\left(1+y^2\right)\)

\(2+x^2+y^2+2xy+x^3y+y^3x\ge2+2x^2+\left(2+2x^2\right)y^2\)

\(2+x^2+y^2+2xy+x^3y+y^3x\ge2+2x^2+2y^2+2x^2y^2\)

\(2xy+x^3y+y^3x\ge x^2+y^2+2x^2y^2\)

\(2xy+x^3y+y^3x-x^2-y^2-2x^2y^2\ge0\)

\(x^3y-x^2+y^3x-y^2+2xy-2x^2y^2\ge0\)

\(x^2\left(xy-1\right)+y^2\left(xy-1\right)-2xy\left(xy-1\right)\)\(\ge0\)

\(\left(xy-1\right)\left(x^2-2xy+y^2\right)\ge0\)

\(\left(xy-1\right)\left(x-y\right)^2\ge0\)

\(Do\begin{cases}x,y\ge1=>xy\ge1=>xy-1\ge0\\\left(x-y\right)^2\ge0\end{cases}\)

\(=>\left(xy-1\right)\left(x-y\right)^2\ge0\left(dpcm\right)\)

 

 

 

28 tháng 11 2016

làm nốt

d) (2x-1)(3x+2)(3-x)

=(6x2+x-2)(3-x)

=-6x3+17x2+5x-6

e) (x+3)(x2+3x-5)

=x3+6x2+4x-15

f) (xy-2)(x3-2x-6)

=x4y-2x3-2x2y-6xy+4x+12

g) (5x3-x2+2x-3)(4x2-x+2)

=20x5-9x4+19x3-16x2+7x-6

 

28 tháng 11 2016

Bài 1:

a) (x-2)(x2+3x+4)

=x(5x+4)-2(5x+4)

= 5x2+4x-10x-8

=5x2-6x-8

11 tháng 6 2018

Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó Ôn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số học

11 tháng 6 2018

Có một số câu thì mình không làm được. Mong bạn thông cảm!!!

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

14 tháng 11 2016

a)Đặt \(T=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) (*)

Từ \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:

\(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)

\(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)

\(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{a+ab+1}\)

\(=\frac{a+ab+1}{a+ab+1}=1=VP\) (Đpcm)

b)Áp dụng Bđt Cô-si ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\)

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{b^2}{c^2}\cdot\frac{c^2}{a^2}}=\frac{2b}{a}\)

\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{c^2}{a^2}}=\frac{2c}{b}\)

Cộng theo vế ta có:

\(\frac{2a^2}{b^2}+\frac{2b^2}{c^2}+\frac{2c^2}{a^2}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\)

\(\Leftrightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\) (Đpcm)

Dấu = khi a=b=c

 

18 tháng 1 2019

ĐK: a > 0, a khác 1

\(M=\dfrac{a-1}{\sqrt{a}-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\sqrt{a}+1\)

\(N=\dfrac{a-1}{\sqrt{a}+1}=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+1}=\sqrt{a}-1\)

\(P=\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}=a+\sqrt{a}+1\)

\(Q=\dfrac{a\sqrt{a}+1}{\sqrt{a}+1}=\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}=a-\sqrt{a}+1\)

15 tháng 3 2022

[1111222x5]

22 tháng 1 2018

a) Bình phương \(x+\frac{1}{x}=3\)

Kết quả: 7
b) Lập phương \(x+\frac{1}{x}=3\)

Kết quả: 18

c) Bình phương \(x^2+\frac{1}{x^2}\)

Kết quả: 47