K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2023

2x² + 5x - 12 = 0

∆ = 25 + 4.2.12 = 121

x₁ = (-5 + 11)/4 = 3/2

x₂ = (-5 - 11)/4 = -4

Bảng xét dấu

         x        -∞   -4   3/2  +∞

2x²+5x-12      +      -       +

Các nghiệm nguyên của bpt là: -4; -3; -2; -1; 0; 1

Vậy bpt đã cho có 6 nghiệm nguyên

 

25 tháng 7 2018

để phương trình \(5x^2-x+m\le0\) vô nghiệm thì \(5x^2-x+m>0\forall x\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta< 0\\a>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2-5\left(m\right)>0\\5>0\left(luônđúng\right)\end{matrix}\right.\) \(\Leftrightarrow1-5m>0\Leftrightarrow m< \dfrac{1}{5}\)

vậy \(m< \dfrac{1}{5}\) thì phương trình \(5x^2-x+m\le0\) vô nghiệm

1. Tìm tập nghiệm của bất pt |2x-5|<3? 2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..? 3. Nghiệm của bpt |2x-3|≤1 là? 4. Bpt |3x-4| ≤2 có nghiệm là? 5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..? 6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là? 7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là? 8. Cho biểu...
Đọc tiếp

1. Tìm tập nghiệm của bất pt |2x-5|<3?
2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..?
3. Nghiệm của bpt |2x-3|≤1 là?
4. Bpt |3x-4| ≤2 có nghiệm là?
5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..?
6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là?
7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là?
8. Cho biểu thức f(x)=1- (2-x/3x-2). Tập hợp tất cả các gtrị của X thỏa mãn bpt f(x)≤0 là?
9. Tập nghiệm của bpt (x-1/x-3)-1<0 là?
10. Số x=2 là nghiệm của bpt nào sau đây:
a) 4-X<1 b) 2X+1<3
c) 3X-7>X d)5X-2>3
11. Tập nghiệm của bpt -4x+1/3x+1≤-3 là?
12. Với X thuộc tập hợp nào thì nhị thức bật nhất f(x)-(x-1)(x+3) không âm?
13. Tập nghiệm S=(-4;5) là tập nghiệm của bpt nào dưới đây:
a)(x+4)(x+5)<0
b)(x+4)(5x-25)<0
c)(x+4)(5x-25)≥0
d) (x-4)(x-5) <0
14. Tổng các tập nghiệm của bpt (x+3)(x-1)≤ 0 là?

GIẢI RA HẾT DÙM EM VỚI Ạ :((

0
1. Tìm tập nghiệm của bất pt |2x-5|<3? 2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..? 3. Nghiệm của bpt |2x-3|≤1 là? 4. Bpt |3x-4| ≤2 có nghiệm là? 5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..? 6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là? 7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là? 8. Cho biểu...
Đọc tiếp

1. Tìm tập nghiệm của bất pt |2x-5|<3?
2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..?
3. Nghiệm của bpt |2x-3|≤1 là?
4. Bpt |3x-4| ≤2 có nghiệm là?
5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..?
6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là?
7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là?
8. Cho biểu thức f(x)=1- (2-x/3x-2). Tập hợp tất cả các gtrị của X thỏa mãn bpt f(x)≤0 là?
9. Tập nghiệm của bpt (x-1/x-3)-1<0 là?
10. Số x=2 là nghiệm của bpt nào sau đây:
a) 4-X<1 b) 2X+1<3
c) 3X-7>X d)5X-2>3
11. Tập nghiệm của bpt -4x+1/3x+1≤-3 là?
12. Với X thuộc tập hợp nào thì nhị thức bật nhất f(x)-(x-1)(x+3) không âm?
13. Tập nghiệm S=(-4;5) là tập nghiệm của bpt nào dưới đây:
a)(x+4)(x+5)<0
b)(x+4)(5x-25)<0
c)(x+4)(5x-25)≥0
d) (x-4)(x-5) <0
14. Tổng các tập nghiệm của bpt (x+3)(x-1)≤ 0 là?

GIẢI RA HẾT DÙM EM VỚI Ạ :((

0
NV
7 tháng 6 2020

Do \(-x^2+2x-5=-\left(x-1\right)^2-4< 0;\forall x\) nên BPT tương đương:

\(x^2-mx+1>0\) ; \(\forall x\in R\)

\(\Leftrightarrow\Delta=m^2-4< 0\Rightarrow-2< m< 2\)

7 tháng 6 2020

Lưu ý là</: dấu nhỏ hơn hoặc bằng

29 tháng 4 2020

a/ từ yc đề bài => \(2x^2+\left(m-1\right)x+1-m\ge0\)

nghiệm đúng với mọi x thuộc R

=> \(\Delta\le0\Leftrightarrow\left(m-1\right)^2-4\cdot2\left(1-m\right)\le0\)

\(\Leftrightarrow m^2+2m-7\le0\)

\(\Leftrightarrow m\in\left[-1-2\sqrt{2};-1+2\sqrt{2}\right]\)

b/ x2 - (2m-1)x + 2m-2 = 0

để pt có 2 nghiệm pb => \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)>0\)

\(\Leftrightarrow4m^2-12m+9>0\Leftrightarrow\left(2m-3\right)^2>0\Leftrightarrow m\ne\frac{3}{2}\)

=> Gọi 2 nghiệm của pt là x1, x2 (x1<x2)

tập nghiệp của bpt đề cho là: \(S=\left[x_1;x_2\right]\)

theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề ta có: \(\left|x_1-x_2\right|=5\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=25\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)=25\)

\(\Leftrightarrow4m^2-12m-16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)(tm)

vậy......

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Câu 1:

Có:

\(x^2+2(m-2)x+m>0\) \(\forall x>2\)

\(\Leftrightarrow x^2-4x+2mx+m>0\) \(\forall x>2\)

\(\Leftrightarrow (x^2-4x)+m(2x+1)>0\) \(\forall x>2\)

\(\Leftrightarrow m> \frac{4x-x^2}{2x+1}\) \(\forall x>2\)

\(\Leftrightarrow m> \max(\frac{4x-x^2}{2x+1})\) với \(x>2\) \((*)\)

\(f(x)=\frac{4x-x^2}{2x+1}\Rightarrow f'(x)=\frac{-2(x^2+x-2)}{(2x+1)^2}\)

Lập bảng biến thiên suy ra \(f(x)=\frac{4x-x^2}{2x+1}< f(2)=\frac{4}{5}\)

\(\Leftrightarrow f(x)_{\max}< \frac{4}{5}\)

Do đó để $(*)$ thỏa mãn thì \(m\geq \frac{4}{5}\)

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Câu 2:

Để PT có hai nghiệm pb \(\Rightarrow \Delta'=4-m^2>0\Leftrightarrow -2< m< 2(1)\)

Khi đó áp dụng hệ thức Viete với $x_1,x_2$ là hai nghiệm của pt đã cho:

\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=m^2\end{matrix}\right.\)

Khi PT chỉ có một nghiệm lớn hơn $3$ thì có nghĩa nghiệm còn lại phải nhỏ hơn $3$

\(\Rightarrow (x_1-3)(x_2-3)< 0\)

\(\Leftrightarrow x_1x_2-3(x_1+x_2)+9< 0\)

\(\Leftrightarrow m^2-12+9< 0\Leftrightarrow m^2<3\Leftrightarrow -\sqrt{3}< m< \sqrt{3}(2)\)

Từ \((1); (2)\Rightarrow -\sqrt{3}< m< \sqrt{3}\)

a: =>-2x^2+5x-2<0

=>2x^2-5x+2>0

=>(x-2)(2x-1)>0

=>x>2 hoặc x<1/2

b: =>5x^2-4x-12<0

=>5x^2-10x+6x-12<0

=>(x-2)(5x+6)<0

=>-6/5<x<2

c: =>-2x^2+3x-7>=0

=>2x^2-3x+7<=0(loại)

13 tháng 2 2022

TH1: m+1=0 <=> m=-1

Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại

TH2: m+1 khác 0 <=> m khác -1

Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x 

<=> {a>0Δ0{m+1>0[(m+1)]24(m+1)0{a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0

<=>{m>1m22m30m>1[m<1m>3m>3{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3

Vậy m>3 thì...