Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)
b) a3 + b3 + c3 - 3abc
= ( a + b)3 - 3ab - 3ba + c - 3abc
= (a3 + 3a2b + 3ab2 + b3) + c3 - (3a2b + 3ab2 + 3ab)
= (a + b)3 + c2 - 3ab(a + b + c)
= (a + b + c) [ (a + b)2 - ( a + b )c + c^2 ] - 3ab(a + b + c)
= ( a + b + c ) ( a2 + b2 + 2ab - ac - bc + c2 -3ab )
= ( a + b + c ) ( a2 + b2 + c2 - ab - ac - bc
b \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)
c \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)
\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)
\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
a \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)
\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)
\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Lời giải:
a)
$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$
$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$
$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$
$=(y+z)(yz+xz-xy-x^2)$
$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$
b)
$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$
$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$
$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$
$=(a+2b)(2ab-ac+c^2-2bc)$
$=(a+2b)[2b(a-c)-c(a-c)]$
$=(a+2b)(2b-c)(a-c)$
c)
$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$
$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$
Lời giải:
a)
$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$
$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$
$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$
$=(y+z)(yz+xz-xy-x^2)$
$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$
b)
$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$
$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$
$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$
$=(a+2b)(2ab-ac+c^2-2bc)$
$=(a+2b)[2b(a-c)-c(a-c)]$
$=(a+2b)(2b-c)(a-c)$
c)
$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$
$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$
$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$