Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7.
\(V=\frac{\left(a\sqrt{2}\right)^3\pi.\sqrt{2}}{3}=\frac{4\pi a^3}{3}\)
8.
Mệnh đề B sai
Mệnh đề đúng là: \(lnx< 1\Rightarrow0< x< e\)
9.
\(\overline{z}=5-2i\Rightarrow z=5+2i\Rightarrow\left|z\right|=\sqrt{5^2+2^2}=\sqrt{29}\)
10.
\(\overrightarrow{NM}=\left(1;-3;-2\right)\) nên đường thẳng MN nhận \(\left(1;-3;-2\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=t\\y=1-3t\\z=3-2t\end{matrix}\right.\)
4.
\(V=3.4.5=60\)
5.
\(\left\{{}\begin{matrix}log_8a+2log_4b=5\\log_8b+2log_4a=7\end{matrix}\right.\)
\(\Rightarrow log_8a-log_8b-2\left(log_4a-log_4b\right)=-2\)
\(\Leftrightarrow log_8\frac{a}{b}-2log_4\frac{a}{b}=-2\)
\(\Leftrightarrow\frac{1}{3}log_2\frac{a}{b}-log_2\frac{a}{b}=-2\)
\(\Leftrightarrow-\frac{2}{3}log_2\frac{a}{b}=-2\)
\(\Leftrightarrow log_2\frac{a}{b}=3\)
\(\Rightarrow\frac{a}{b}=8\)
6.
\(log_{\frac{1}{5}}x=t\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}log_{\frac{1}{5}}x=-1\\log_{\frac{1}{5}}x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{125}\end{matrix}\right.\)
8.
\(\int3^xdx=\frac{3^x}{ln3}+C\)
9.
\(V=\frac{1}{3}S.h\Rightarrow h=\frac{3V}{S}=\frac{2\sqrt{6}}{3}\)
10.
\(V=\frac{4}{3}\pi R^3\Rightarrow R=\sqrt[3]{\frac{3V}{4\pi}}=\sqrt[3]{\frac{3.36\pi}{4\pi}}=\sqrt[3]{27}=3\)
4.
\(u_2=u_1q\Rightarrow u_1=\frac{u_2}{q}=\frac{8}{3}\)
5.
\(log_2\left(x-5\right)=3\Rightarrow x-5=8\Rightarrow x=13\)
6.
\(AC=a\sqrt{6}\Rightarrow AB=\frac{AC}{\sqrt{2}}=a\sqrt{3}\)
\(\Rightarrow V=AB^3=9\sqrt{3}.a^3\)
7.
\(y'=e^{2x}.\left(2x\right)'=2.e^{2x}\)
7.
Hình vuông có diện tích bằng 4 nên độ dài cạnh bằng \(\sqrt{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}R=\frac{2}{2}=1\\h=2\end{matrix}\right.\)
Thể tích trụ: \(V=\pi R^2h=2\pi\)
8.
Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\)
Mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)
\(AM=\frac{a\sqrt{3}}{2}\) (độ dài trung tuyến tam giác đều)
\(\Rightarrow tan\widehat{SMA}=\frac{SA}{AM}=\frac{2\sqrt{3}}{3}\)
Bài 14:
Vecto chỉ phương của đường thẳng $d$ là: $\overrightarrow{u_d}=(1; -1; 2)$
Mp $(P)$ vuông góc với $d$ nên nhận $\overrightarrow{u_d}$ là vecto pháp tuyến
Do đó PTMP $(P)$ là:
$1(x-x_M)-1(y-y_M)+2(z-z_M)=0$
$\Leftrightarrow x-y+2z=0$
Đáp án A
Bài 13:
Khi quay tam giác đều ABC quanh cạnh AB thì ta thu được một khối hình là hợp của 2 hình nón (ngược chiều nhau) có cùng bán kính đáy $r$ là đường cao của tam giác đều, tức là $r=\frac{\sqrt{3}}{2}.1=\frac{\sqrt{3}}{2}$ và đường cao là $h=\frac{AB}{2}=\frac{1}{2}$
Thể tích 1 hình nón: $V_n=\frac{1}{3}\pi r^2h=\frac{\pi}{8}$
Do đó thể tích của khối hình khi quay tam giác đều ABC quanh AB là: $2V_n=\frac{\pi}{4}$