Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.
a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)
\(\Rightarrow3x+1>0\) và \(2x-4< 0\)
hoặc \(3x+1< 0\) và \(2x-4>0\)
+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)
\(2x-4< 0\Rightarrow x< 2\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)
+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)
\(2x-4>0\Rightarrow x>2\left(4\right)\)
Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)
\(\Rightarrow\) vô lý.
Vậy \(\frac{-1}{3}< x< 2.\)
b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)
\(\Rightarrow-x-5>0\) và \(2x+1>0\)
hoặc \(-x-5< 0\) và \(2x+1< 0\)
+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)
\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)
Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)
+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)
\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)
Từ (7) và (8) suy ra \(x< -5\)
Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).
d)\(\left|x+3\right|< 5\)
\(\Rightarrow-5< x+3< 5\)
\(\Rightarrow-8< x< 2\)
Bài giải
a, \(\left|x-0,6\right|< \frac{1}{2}\)
* Nếu \(x-0,6< 0\) thì :
\(-\left(x-0,6\right)< \frac{1}{2}\)
\(-x+\frac{3}{5}< \frac{1}{2}\)
\(-x< \frac{1}{2}-\frac{3}{5}\)
\(-x< -\frac{1}{10}\)
\(x< \frac{1}{10}\)
a) |2x-1|=5-x
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b)|2x-1|>2 <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)
c)\(\Leftrightarrow-5< 3x-7< 5\) <=>2/3<x<4
a: x+1>0
=>x>-1
b: -2x-3<0
=>-2x<3
=>x>-3/2
c: 4x+5>0
=>4x>-5
=>x>-5/4
d: -7x-3<0
=>-7x<3
=>x>-3/7
k: 3x+7>0
=>3x>-7
=>x>-7/3
l: -4x-1<0
=>-4x<1
=>x>-1/4
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Rightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\\left[{}\begin{matrix}2x=2\\2x=0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)