Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 2x2-8xy-5x+20y
=2x(x-4y)-5(x-4y)
=(2x-5)(x-4y)
2) x3-x2y-xy+y2
=x2(x-y)-y(x-y)
=(x2-y)(x-y)
3) x2-2xy-4z2+y2
=(x-y)2-(2z)2
=(x-y-2z)(x-y+2z)
4) a3+a2b-a2c-abc
=a2(a+b)-ac(a+b)
=(a2-ac)(a+b)
=a(a-c)(a+b)
5) x3+y3+3x2y+3xy2-x-y
=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)
=(x+y)(x2-xy+y2+3xy-1)
=(x+y)[(x+y)2-1)]
=(x+y)(x+y+1)(x+y-1)
6) x3+x2y-x2z-xyz
=x2(x+y)-xz(x+y)
=(x2-xz)(x+y)
=x(x-z)(x+y)
7) =[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+z2)+y(z2+x2)+z(x+y)2
=xy(x+y)+z2(x+y)+z(x+y)2
=(x+y)(xy+z2+zx+zy)
=(x+y)(x+z)(y+z)
8) x3(z-y)+y3(x-z)+z3(y-x)
Tách x-z= -[z-y+y-x]
1, 2x2 - 8xy - 5x + 20y
= (2x2 - 5x) - (8xy - 20y)
= x(2x - 5) - 4y(2x - 5)
= (2x - 5) (x - 4y)
2, x3 - x2y - xy + y2
= (x3 - xy) - (x2y - y2)
= x(x2 - y) - y(x2 - y)
= (x2 - y) (x - y)
3, x2 - 2xy - 4z2 + y2
= (x2 - 2xy + y2) - 4z2
= (x - y)2 - (2z)2
= (x - y - 2z) (x - y + 2z)
4, a3 + a2b - a2c - abc
= (a3 - a2c) + (a2b - abc)
= a2(a - c) + ab(a - c)
= (a - c) (a2 + ab)
5, x3 + y3 + 3x2y + 3xy2 - x - y
= (x3 + 3x2y + 3xy2 + y3) - (x + y)
= (x + y) 3 - (x + y)
= (x + y) [(x + y)2 - 1]
= (x + y) (x + y - 1) (x + y + 1)
a) ( 2x + 3 )2 - 2( 2x + 3 )( 2x + 5 ) + ( 2x + 5 )2
= [ ( 2x + 3 ) - ( 2x + 5 ) ]2
= ( 2x + 3 - 2x - 5 )2
= (-2)2 = 4
b) ( x2 + x + 1 )( x2 - x + 1 )( x2 - 1 )
= ( x4 - x3 + x2 + x3 - x2 + x + x2 - x + 1 )( x2 - 1 )
= ( x4 + x2 + 1 )( x2 - 1 )
= x6 - x4 + x4 - x2 + x2 - 1
= x6 - 1
c) ( x + y )2 + ( x - y )2
= x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 + 2y2 = 2( x2 + y2 )
d) 2( x - y )( x + y ) + ( x + y )2 + ( x - y )2
= [ ( x + y ) + ( x - y ) ]2
= ( x + y + x - y )2
= ( 2x )2 = 4x2
e) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
f) ( a + b - c )2 + ( a - b + c )2 - 2( b - c )2
= [ ( a + b ) - c ]2 + [ ( a - b ) + c ]2 - 2( b2 - 2bc + c2 )
= [ ( a + b )2 - 2( a + b )c + c2 ] + [ ( a - b )2 + 2( a - b )c + c2 ] - 2b2 + 4bc - 2c2
= a2 + b2 + c2 + 2ab - 2bc - 2ca + c2 + a2 + b2 + c2 - 2ab + 2bc + 2ac - 2b2 + 4bc - 2c2
= 2a2
g) ( a + b + c )2 + ( a - b - c )2 + ( b - c - a )2 + ( c - a - b )2
= [ ( a + b ) + c ]2 + [ ( a - b ) - c ]2 + [ ( b - c ) - a ]2 + [ ( c - a ) - b ]2
= [ ( a + b )2 + 2( a + b )c + c2 ] + [ ( a - b )2 - 2( a - b )c + c2 ] + [ ( b - c )2 - 2( b - c )a + a2 ] + [ ( c - a )2 - 2( c - a )b + b2 ]
= [ a2 + b2 + c2 + 2ab + 2bc + 2ca ] + [ a2 + b2 + c2 - 2ab + 2bc - 2ca ] + [ a2 + b2 + c2 - 2ab - 2bc + 2ca ] + [ a2 + b2 + c2 + 2ab - 2bc - 2ca ]
= 4a2 + 4b2 + 4c2
Có vẻ hơi dài dòng nhỉ :( Nhưng như này là kĩ nhất đấy :)
Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$
Bài 1: 4a2-4ab+b2-9a2b2
=(2a)2-2.2a.b+b2-(3ab)2
=(2a-b)2-(3ab)2
=(2a-b-3ab)(2a-b+3ab)
a/ (4a2-4ab+b2)-9a2b2
= (2a-b)2-(3ab)2
= (2a-b-3ab) (2a-b+3ab)
1.
= 4x\(^{^{ }2}\)-4x-9x+9
=4x(x-1)-9(x-1)
=(4x-9)(x-1)
a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)^3-x^3-y^3\right]+3z\left(x+y\right)\left(x+y+z\right)\)
\(=3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
d) \(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)
\(=\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)
\(=\left(x^2+y^2-5\right)^2-\left[\left(2xy\right)^2+2.2xy.4+16\right]\)
\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)
\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)
\(=\left(x^2-2xy+y^2-9\right)\left(x^2+2xy+y^2-1\right)\)
\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-1\right]\)
\(=\left(x-y-3\right)\left(x-y+3\right)\left(x+y-1\right)\left(x+y+1\right)\)
e) \(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)
\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)
\(=\left(x^2+4y^2-5\right)^2-\left[4\left(xy+1\right)\right]^2\)
\(=\left(x^2+4y^2-5\right)-\left(4xy+4\right)^2\)
\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)
\(=\left(x^2+4y^2-4xy-9\right)\left(x^2+4y^2+4xy-1\right)\)
\(=\left[\left(x-2y\right)^2-3^2\right]\left[\left(x+2y\right)^2-1\right]\)
\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)
f) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)
\(=\left(x-y+5-1\right)^2\)
\(=\left(x-y+4\right)^2\)